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Abstract

Predicting the realized volatility of Bitcoin has become an increasingly and recurrent subject
in the literature. This dissertation, as in most of the papers that adress this issue, uses HAR-type
models. Using data from nine exchanges from January 1, 2015, until October 19, 2021, several
models were implemented in order to find out which variables are the most important in predicting
1-day ahead volatility. One of the main objectives of this work is to find out if Blockchain and other
market information are relevant to predict future volatility. The results point out that the models where
Blockchain information is introduced do not present more accurate results, and that the HAR-J-LN
is the best model, meaning that log transformation of realized volatility and including jumps are
important aspects when forecasting the realized volatility of Bitcoin.





Resumo

Prever a volatilidade realizada da Bitcoin tornou-se um assunto cada vez mais recorrente na
literatura. Esta dissertação, tal como outros trabalhos que estudam este tema, utiliza modelos do tipo
HAR. Utilizando dados de nove bolsas, de 1 de janeiro de 2015 até 19 de outubro de 2021, foram
implementados vários modelos a fim de descobrir quais as variáveis mais importantes na previsão da
volatilidade. Um dos principais objectivos deste trabalho é descobrir se a informação da Blockchain e
outra informação de mercado são relevantes na previsão da volatilidade futura. Os resultados permitem
concluir que os modelos onde a informação da Blockchain é introduzida não apresentam resultados
mais precisos, e que o modelo HAR-J-LN é o melhor modelo, o que significa que a transformação
logarítmica da volatilidade realizada e a inclusão da variável jumps são aspetos importantes, na
previsão da volatilidade realizada da Bitcoin.
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Chapter 1

Introduction

Satoshi Nakamoto, founder of Bitcoin, describes it as a peer-to-peer version of electronic cash
that allows online payments to be sent directly from one party to another without going through a
financial institution, leading to lower costs and a more streamlined process (Nakamoto [21]).

Unlike regular currencies such as the Euro or the Dollar, Bitcoin’s activity happens in a public
decentralized ledger, known as Blockchain, which means that all users collectively retain control, and
changes in rules only occur when the majority approves. This ledger provides pseudo-anonymity
(users cannot be easily identified unless they reveal their identity) and avoids double-spending, i.e., a
user cannot use the same cryptocurrency more than once (Lansky [18]). The security of Blockchain
is guaranteed by "miners" (users who generate new cryptocurrency units by solving cryptographic
problems on their computers), who in exchange for Bitcoin units, ensure the integrity of the ledger.

As time went by and Bitcoin became more popular, more cryptocurrencies started to appear.
According to CoinMarketCap, assessed on February 1, 2022, there are more than 17250 cryptocurren-
cies with a total market capitalization of approximately $1.760.150.348.599. Bitcoin, the number one
crypto in terms of market capitalization and price, represents 41.3% with a market capitalization of
$726.5B, followed by Ethereum ($328.17B) and Binance Coin ($63.31B).

The main objective of this work is to find out if Blockchain and other market information can
help predict the realized volatility of Bitcoin (BTC/USD), something that has not been much explored
in the literature. To this end, we will implement several HAR models on the realized volatility of
Bitcoin using also several exogenous variables, such as volume, jumps, and Blockchain information.
In addition to the 16 models applied, we also created two other prediction schemes (from those
generated by the models): the arithmetic mean and a weighted mean. Another differentiating aspect
of this work is the fact that we collect data from nine different exchanges, which in our view, leads to
a better representation of the overall Bitcoin market.

The remainder of this paper is organized as follows. Chapter 2 presents a literature review
focusing on forecasting the realized volatility of Bitcoin. Chapter 3 describes the dataset and performs
a preliminary analysis. Chapter 4 explains the methodology used in this work. Chapter 5 presents the
results and chapter 6 concludes.
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Chapter 2

Literature Review

Since its inception in 2008, when Satoshi Nakamoto created Bitcoin, cryptocurrencies have
been the subject of numerous studies, the most important ones for this work being those conducted
from a financial perspective. Some of these studies focus on the speculative nature of Bitcoin. For
example, Fry and Cheah [13] concludes that Ripple and Bitcoin have experienced negative bubbles
(from 2014 onwards), while Cheah and Fry [8] concludes that Bitcoin fundamental value is zero and
speculative bubbles exist, and Chaim and Laurini [7] provides evidence that a bubble existed from
early 2013 to mid-2014.

Other studies, for example, Kyriazis [16], Fang et al. [12], and Matkovskyy et al. [20], focus
on Bitcoin’s relationship with other markets. All conclude that Bitcoin may act as a hedge against
uncertainty in traditional markets (just like gold). The latter also concludes that monetary policy
shocks increase Bitcoin volatility. On the other hand, Klein et al. [15] concludes that Bitcoin is not the
new gold as it shows a positive coupling effect and declines when markets are in a downward trend.

Another of the most explored themes in the literature is modeling and forecasting cryptocurren-
cies volatility using GARCH-type models. Baur and Dimpfl [3] and Bouri et al. [4] study the existence
of asymmetry in volatility by employing a TGARCH and an Asymmetric-GARCH, respectively. Baur
and Dimpfl [3] find that volatility increases more in response to positive shocks than in response
to negative shocks, implying an asymmetric effect in most cryptocurrencies, except in Bitcoin and
Ethereum. Bouri et al. [4] explore Bitcoin volatility and conclude that the previous phenomenon only
happened before the 2013 price crash.

To test which model best forecasts one-step-ahead volatility and Value-at-Risk (VaR) in the
Bitcoin market, Trucíos [24] implements a wide range of GARCH-type models. His paper shows that
robust procedures outperform non-robust ones and highlights the importance of outliers while model-
ing and forecasting Bitcoin volatility measures. Also, Ardia et al. [2] conclude that Markov-switching
GARCH models outperform standard GARCH models when forecasting the one-day-ahead VaR and
find evidence of regime changes in Bitcoin volatility dynamics. Köchling et al. [17] conclude that it’s
not an easy task to choose one model that outperforms the others.

Conrad et al. [9] and Walther et al. [25] apply the GARCH-MIDAS model to determine the
potential drivers of Bitcoin volatility. The first considers the VIX, risk in the US stock market, and
a measure of global economic activity. Their findings support the evidence that Bitcoin volatility is
pro-cyclical, i.e., increases with higher levels of economic activity. Walther et al. [25] applies the
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4 Literature Review

model to five cryptocurrencies (Bitcoin, Ethereum, Litecoin, Ripple, and Stellar) and concludes that
Global Real Economic Activity is the most significant exogenous driver of Bitcoin volatility.

Similar to GARCH models, HAR models are also widely explored in the literature (e.g., Qiu
et al. [22], Bouri et al. [5] and Aalborg et al. [1]). The standard in these models is to use realized
volatility (square root of the sum of squared returns within a fixed period) as the dependent variable,
following Corsi [10]. Returns are calculated using, most of the time, 5-minute data as it seems to be
the best option, according to Liu et al. [19]. This model builds on the assumption of three different
types of investors creating three different types of volatility: short-term, medium-term, and long term,
hence the use of daily, weekly, and monthly realized volatility.

Qiu et al. [22] implements the HAR model along with variations such as HAR-J (adding jumps),
HAR-RS (decomposing the variance into two signed semi-variances), and the HARQ-type models
(adding realized quarticity). They also apply the MAC estimator that allows for model specification
uncertainty and aims to minimize the MSE of the coefficients, concluding that HARQMAC models
provide the best forecasts.

Other approaches can be used to improve the accuracy of forecasts. Bouri et al. [5] uses
Machine-Learning techniques, such as Random Forests, to analyze the role of the US-China trade
war in forecasting out-of-sample daily realized volatility of Bitcoin returns. The authors extend
the HAR model to include a metric of US-China trade tensions (based on Google Trends), jumps,
realized skewness, and realized kurtosis. They concluded that US-China trade uncertainty improves
the accuracy of volatility forecasts. Gkillas et al. [14] also uses Random Forests alongside with the
inclusion of jumps, which improves out-of-sample forecast accuracy, according to the authors.

Xie [26] implements a wide range of methods to predict Bitcoin volatility. The findings support
the evidence that there is excessive model uncertainty when modeling Bitcoin volatility by con-
ventional regression methods and that H-MAHAR performs significantly better than conventional
regressions at a 5% level.

Aalborg et al. [1] base their volatility models on the HAR model, including additional variables
to see if any of them can improve Bitcoin daily forecastability: Google Trends, transaction volume
(Bitcoins exchanged for goods or services), trading volume, unique addresses, changes in the VIX
Index, and returns. They concluded that only trading volume is significantly correlated with Bitcoin
daily volatility and can help predict it. On a similar approach, Yu [27] investigates the impacts of
leverage effect and economic policy uncertainty on Bitcoin volatility, using HAR-type models. The
author finds that adding those variables to the benchmark model can improve predictions.

Table 2.1 presents some studies on forecasting the realized volatility of Bitcoin, highlighting
the sample period, data frequency, data source, models used and main conclusions.
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Chapter 3

Data and Preliminary Analysis

3.1 Data

In this dissertation, the object of study is Bitcoin (BTC) volatility in the period from Jan-
uary 1, 2015, to October 19, 2021. The sample was divided into three sub-samples. The first,
"Training-sample”, corresponds to the period from January 1, 2015, to May 26, 2018. The second,
“Validation-sample”, covers the period from May 27, 2018, to February 6, 2020. The third sub-sample,
"Test-sample" covers the remaining period. This data partition implies a 50/25/25 split, as it is
common in Machine-Learning applications.1

Fig. 3.1 Training Sample, Validation Sample and Test Sample

The data was collected from three sources: Cryptodatadownload (https://cryptodatadownload.com),
Bitcoincharts (https://bitcoincharts.com/), and Coinmetrics (https://coinmetrics.io/).

Cryptodatadownload provides intraday data (1-minute) on OHLC (Open/High/Low/Close)
prices in USD and trading volume from two exchanges: Gemini and Ftx. Bitcoincharts provides tick-
by-tick trade prices in USD and number of Bitcoins traded (volume) recorded at several exchanges,
from which only seven have uninterrupted data for the period under scrutiny: Bitbay, Bitfinex, Bitflyer,
Bitkonan, Bitstamp, HitBTC, and Kraken. The data was then filtered to 5 minute closing prices.
These are the last recorded prices before the sampling moment. Next, the log-returns were calculated,
rt = ln( Pt

Pt−1
), which were later used to calculate the realized volatility using Formula 4.2

Figure 3.2 presents the path of volume-weighted Bitcoin daily prices, using data from the nine

1https://online.stat.psu.edu/stat508/lesson/2/2.2
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8 Data and Preliminary Analysis

exchanges referred to above, using the formula:

Pt =
∑

n
i=1 vt,iPt,i

∑
n
i=1 vt,i

, (3.1)

where i refers to exchange i, n is the number of exchanges , Pt,i, and vt,i, are the price and trading
volume in exchange i at day t, respectively.

From 2015 until mid-2017, Bitcoin prices experience an almost linear growth. After that,
Bitcoin behavior changes drastically, presenting an exponential growth until hitting roughly 20,000
USD in late 2017. This trend ended and gave place to a sharp decline in prices, reaching almost 3,000
in 2019. Bitcoin prices then remained between 4,000 and 14,000, until late 2020, when there was
an explosive price behaviour that sent Bitcoin to all-time highs at around 57,600. In 2021, there is a
new retraction followed by a new episode of explosive prices. The recent history of Bitcoin prices is
sintomatic of its speculative nature and its susceptibility to bubble-like events (like those described in
Fry and Cheah [13], Cheah and Fry [8], and Chaim and Laurini [7]).

Figure 3.3 presents the realized volatility of Bitcoin. The main feature is the existence of
periods of extremely high volatility throughout the overall sample.

The last source, Coinmetrics, provides daily Blockchain and other market information. This
dataset contains 139 variables and three were excluded because they were null. Appendix A.1 provides
a detailed description of these variables.

Fig. 3.2 Volume Weighted Bitcoin Daily Prices in USD
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Fig. 3.3 Realized Volatility of Bitcoin

3.2 Preliminary Analysis

Table 3.1 presents the descriptive statistics of Bitcoin realized volatility. As can be seen, there
is no notable difference in the statistics presented for the various samples. In all subsamples, Bitcoin
realized volatility presents a kurtosis greater than 3, so its distribution is leptokurtic. Regarding
skewness, one can conclude that the distributions are right-skewed, which is expected because realized
volatility is always non-negative. The Jarque-Bera test rejects, at a 1% significance level, the normality
of the distributions.

Table 3.1 Descriptive Statistics of Realized Volatility

Full Sample Training Sample Validation Sample Test Sample

Observations 2484 1242 621 621
Mean 0.0478 0.0567 0.0367 0.0409
Median 0.0376 0.0457 0.0286 0.0409
Std. Dev. 0.0403 0.0434 0.0402 0.0281
Minimum 0.0067 0.0122 0.0067 0.009
Maximum 0.7528 0.605 0.7528 0.3280
Kurtosis 75.5654 44.5537 179.1123 29.3812
Skewness 6.1458 4.692 11.176 3.9138
Jarque-Bera 560641 93914 815454 19530
JB p-value <0.001 <0.001 <0.001 <0.001





Chapter 4

Methodology

The essence of the methodology used in this work is based on Corsi [10] which gives an
in-depth analysis of the HAR model. Other papers such as Aalborg et al. [1] and Bouri et al. [5] are
also relevant because they show how one can modify the basic HAR model to include exogenous
variables.

4.1 Variables

4.1.1 Realized Volatility

Corsi [10] calculates realized volatility as the square root of the sum of squared intraday returns.
Given that we are working with data from several exchanges, we use the following formula to calculate
volume-weighted squared returns at the 5-minute interval j in day t:

r2
t, j =

∑
n
i=1 vt, j,ir2

t, j,i

∑
n
i=1 vt, j,i

(4.1)

where i refers to exchange i, n is the number of exchanges , rt, j,i, and vt, j,i, are the log-return and
trading volume in exchange i at the 5-min interval j in day t, respectively. Subsequently, we calculate
realized volatility in day t as:

RVt =

√√√√ T

∑
j=1

r2
t, j (4.2)

Since Bitcoin is available for trading 24/7, we have 288 (5-minute) intervals in a day, hence in Equation
(4.2).

T = 288 (4.3)

11
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4.1.2 Trading Volume

The trading volume data were obtained from each exchange. The daily trading volume was
computed by adding the trading volume from all exchanges (Volumet = ∑ j ∑i vt, j,i). The volume
variable (Vt) was then standardized according to Equation (4.4)

Vt =
Volumet −Volume

σ(Volume)
, (4.4)

where Volumet represents the total volume at day t, Volume stands for the volume average, and
σ(Volume) represents its standard deviation.

4.1.3 Blockchain and other Market Information

The principal focus of this paper is to find out if Blockchain information plays an important
role when forecasting Bitcoin volatility.

The dataset obtained from Coinmetrics contains 139 variables, of which three are excluded
because they are null, leaving us with 136 variables. Most of these variables are related to Blockchain,
while others are related to the Bitcoin transaction market (e.g., market capitalization). It would be
almost impossible to incorporate all these variables into the HAR models. To solve this dimensionality
we normalize the data set and then reduce the size of the exogenous variables space by applying
Principal Component Analysis (PCA). PCA is a mathematical technique that transforms (possibly)
correlated variables into a set of variables called principal components (see Richardson [23] for a
more in-depth review on PCA). We use the Matlab built-in function pca1 that uses the singular value
decomposition (SVD) algorithm to calculate the principal components coefficients and also returns
the percentage of the total variance explained by each principal component. The variables in the
initial data set are linear functions of the principal components. In this work, we select the principal
components that account for most (at least 75%) of the variation in the Blockchain variables. By using
those principal components instead of the initial variables, we significantly decrease the number of
variables to be included in the regression models.

4.1.4 Jumps

Another variable often used in HAR-type models (e.g., Qiu et al. [22] and Bouri et al. [5]) is the
daily jump component (Jt). A price jump can be defined as an abrupt price change that is considerably
larger when compared with the current market situation, usually computed as:

Jt = max(RVt −BPVt ,0) (4.5)

where BiPower Variation (BPV) is given by:

BPVt =

√√√√π

2

288

∑
j=2

|rt, j−1||rt, j| (4.6)

1https://www.mathworks.com/help/stats/pca.html
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4.2 HAR-type models

The standard HAR model that postulates the h-step ahead realized volatility, proposed by Corsi
[10], is the following:

RVt+h = β0 +βdRV (1)
t +βwRV (5)

t +βmRV (22)
t + et+h, (4.7)

where RV (l)
t = l−1

∑
l−1
s=0 RVt−s, is the l period averages of lagged RV, the β s are the coefficients and

et+h is a zero mean innovation process.
The model described in 4.7 is usually applied to traditional financial assets, therefore the use of

lag indexes l = [1,5,22], representing the daily, weekly and monthly volatility of these markets, as
they are closed on weekends. But since Bitcoin is available for trading 24/7, the suitable HAR model
is:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t + et+h. (4.8)

As mentioned above, the HAR model can be modified to include more variables. The HAR-V
model is one example of that and includes the variable volume:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +βvVt + et+h. (4.9)

The HAR-PC model incorporates the principal components of Blockchain and other market
information and it is defined as follows:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +β1PC1

t +β2PC2
t +β3PC3

t + et+h, (4.10)

where PCs represents the principal components (in this case three PCs are included in the model,
which is enough to explain 75% of the variability of the 136 variables in the Coinmetrics database).

The last variable used in this study is the daily jump component, Jt , and gives rise to the HAR-J
model:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +β jJt + et+h. (4.11)

The following four models result from the combination of the variables used in previous models.

HAR-V-PC:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +βvVt +β1PC1

t +β2PC2
t +β3PC3

t + et+h. (4.12)

HAR-V-J:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +βvVt +β jJt + et+h. (4.13)

HAR-PC-J:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +β1PC1

t +β2PC2
t +β3PC3

t +β jJt + et+h. (4.14)
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HAR-V-PC-J:

RVt+h = β0 +βdRV (1)
t +βwRV (7)

t +βmRV (30)
t +β1PC1

t +β2PC2
t +β3PC3

t +βvVt + ...

β jJt + et+h.
(4.15)

Applying logarithms to the previous models (similar to Catania and Sandholdt [6]), we thus
have more eight models.

HAR-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+ et+h, (4.16)

where ln(RV (l)
t ) = l−1

∑
l−1
s=0 ln(RVt−s).

HAR-V-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+βvVt + et+h. (4.17)

HAR-PC-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+β1PC1

t +β2PC2
t + ...

β3PC3
t + et+h.

(4.18)

HAR-J-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+β jln(Jt)+ et+h, (4.19)

where ln(Jt) = max(ln(Rt)− ln(BPVt),0)

HAR-PC-V-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+β1PC1

t +β2PC2
t +β3PC3

t + ...

βvVt + et+h.

(4.20)

HAR-V-J-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+βvVt +β jln(Jt)+ et+h. (4.21)
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HAR-PC-J-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+β1PC1

t +β2PC2
t +β3PC3

t + ...

β jln(Jt)+ et+h.

(4.22)

HAR-V-PC-J-LN:

ln(RVt+h) = β0 +βd ln(RV (1)
t )+βwln(RV (7)

t )+βmln(RV (30)
t )+β1PC1

t +β2PC2
t +β3PC3

t + ...

βvVt +β jln(Jt)+ et+h.

(4.23)

The next step is to find out which window length best fits each model. We start by dividing the
sample into three sub-samples in a 50/25/25 split, as indicated in Figure 3.1.

The procedure for each model is as follows:

1. The model is estimated using observations 30 to 1242 (from the Training sample), i.e., with
a window length of 1212. It is important to note that it’s not possible to use a window length
equal to 1241 (length of Training sample until observation 1241, the last observation used
in the first rolling window) because the first 30 observations are needed to compute the first
realization of variable RV (30)

t . Using this information, we compute the forecast for observation
1243 (first observation of Validation sample). Then we re-estimate the model using observations
31 to 1243 and compute the forecast for observation 1244 (second observation of Validation
sample) and so on until we forecast every value for the Validation sample. So the forecasts in
the Validation Sample are obtained using a rolling window with fixed length Afterwards we
calculate the RMSE statistic (see Equation 4.35).

2. We repeat this process, but this time using a window length of 1211, that is, we estimate the
model using observations 31 to 1242 from the Training sample to then calculate the forecast for
observation 1243. Then we proceed analogously to what was explained above.

3. This process is executed 1183 times until the window length equals 30. The window length that
results in the smallest RMSE value is the one selected.

4. After ascertaining the best window length for each model, the forecasts for the Test sample are
calculated. It’s important to note that, in this paper, we only calculate 1-day ahead forecasts,
i.e., h=1.
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Equations 4.24 and 4.25 illustrate the computations performed in step 1, while Equations
4.26 and 4.27 illustrate the computations performed in step 2 for the HAR model.

RV31
.
.

RV (30)
1242

=


1 RV (1)

30 RV (7)
30 RV (30)

30
. . . .
. . . .

1 RV (1)
1241 RV (7)

1241 RV (30)
1241

×


β0
βd
βw

βm

 (4.24)

RV1243 = β0 +βdRV (1)
1242 +βwRV (7)

1242 +βmRV (30)
1242 (4.25)


RV32
.
.

RV (30)
1242

=


1 RV (1)

31 RV (7)
31 RV (30)

31
. . . .
. . . .

1 RV (1)
1241 RV (7)

1241 RV (30)
1241

×


β0
βd
βw

βm

 (4.26)

RV1243 = β0 +βdRV (1)
1242 +βwRV (7)

1242 +βmRV (30)
1242 (4.27)

At the end of this process we have computed 16 sets of predictions, one for each model. We
also calculate two additional forecasts (using the previous ones): the arithmetic mean and a weighted
mean (WM). The weighted mean forecast for day t +1 is computed as:

WMt+1 =
16

∑
i=1

wiŷi,t+1 (4.28)

where ŷi,t+1 is the forecast of model i at day t +1, and wi is the weight defined by:

wi =
φ
−1
i

∑
16
j=1 φ

−1
j

(4.29)

where φi is given by:

φi =
1

T − t0

T

∑
t=t0+1

e2
i,t+1 (4.30)

where t0 is the first observation and T is the last observation in the window used to obtain ŷi,t+1 and
ei,t+1 is the error.

The choice of these weights implicit assume that the errors of the different models are not
correlated with each other. The weights decrease with the variance of the errors, hence the more
accurate are the models the higher are the weights.

The forecasts are then compared with the actual values to measure the forecasting perfor-
mance of the different models. The statistics used are the Mean Error (ME), the Mean Absolute Error
(MAE), the Mean Percentage Error (MPE), the Mean Absolute Percentage Error (MAPE), the Root
Mean Square Error (RMSE), and Theil’s U (U), computed as follows:

ME =
1
n

n−1

∑
t=0

(yt+1 − ŷt+1) (4.31)
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MAE =
1
n

n−1

∑
t=0

|yt+1 − ŷt+1| (4.32)

MPE =
100%

n

n−1

∑
t=0

(
yt+1 − ŷt+1

yt+1

)
(4.33)

MAPE =
100%

n

n−1

∑
t=0

∣∣∣∣(yt+1 − ŷt+1)

yt+1

∣∣∣∣ (4.34)

RMSE =

√
∑

n−1
t=0 (yt+1 − ŷt+1)2

n
(4.35)

U =

√√√√√√√√
∑

n−2
t=0

(
ŷt+2−yt+2

yt+1

)2

∑
n−2
i=0

(
yt+2−yt+1

yt+1

)2 (4.36)

Where n is the number of forecasts, yt+1 is the actual value of the forecasted variable (RVt+1 or
ln(RVt+1)) at observation t+1.

We also apply the test proposed by Diebold and Mariano [11] with the null hypothesis of
no difference in the accuracy of two competing forecasts.





Chapter 5

Forecasting Performance

For illlustration purposes, Table 5.1 shows the initial OLS regression results for all 16 models.
The coefficients presented where then used to forecast the first observation in the test-sample. The
models presented in the table can be divided into two groups: HAR (1-8) and HAR-LN (9-16)

In the first group, the results allow us to conclude that lagged RV has a positive relation with
future RV (except for RV (30) in model HAR-V-PC ), and that RV (1) and RV (7) are always significant
at 1% level. Similar to RV , the PC coefficients are always positive (except for PC3 in model HAR-V-
PC-J). On the other hand, the statistical significance of those coefficients varies across models. The
volume coefficient is significant at the 1% level, except for model HAR-V-J. The 1-day lagged jump
has a negative relation with future volatility and it is always significant at the 1% level.

Moving on to the second group of models, we see that the coefficients of ln(RV (1)), ln(RV (7)),
ln(RV (30)), ln(J) are similar to the coefficients of RV (1), RV (7), RV (30), J from the first group of
models, however in this group of models the coefficients of ln(RV (7)) aren’t always significant. PC1

and PC3 have a negative relation with future volatility, and PC2 has a positive relation. Regarding Vt ,
it is only significant in model HAR-V-LN.

19
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Most notably, Table 5.2 presents the forecasting statistics of each model. From these
statistics, it’s hard to draw any concise conclusion, as the values are quite similar. Although there
are no marked differences, it can be seen that the HAR-V-J model presents some of the best values
in four statistics (RMSE, ME, MAE, MAPE, Theil’s U). The Mean and Weighted Mean also show
interesting results in those statistics. The MAPE statistic exhibits a higher variability when compared
to the RMSE and MAE statistics. It also stands out that HAR-LN models have, on average, a smaller
window length (413 vs 1082).

Table 5.2 Forecasting Performance of each Model

Models RMSE ME MAE MPE MAPE Theil´s U Window length

HAR (1) 0.022104 0.0000 0.0118 -16.81 % 30.80% 1.0146 1131
HAR-V (2) 0.022308 -0.0033 0.0131 -16.88% 29.39% 0.9580 1131
HAR-PC (3) 0.022392 -0.0008 0.0125 -4.01% 23.71% 0.9642 1149
HAR-J (4) 0.021387 -0.0017 0.0119 -6.57% 24.31% 0.9543 917
HAR-V-PC (5) 0.022371 -0.0035 0.0132 -5.72% 23.95% 0.9539 1206
HAR-V-J (6) 0.021413 0.0008 0.0114 -6.18% 23.97% 0.9504 917
HAR-PC-J (7) 0.021653 -0.0019 0.0122 -19.63% 33.72% 1.0534 997
HAR-V-PC-J (8) 0.021611 0.0007 0.0132 -17.84% 30.59% 0.9794 1206
HAR-LN (9) 0.022657 0.0032 0.0109 -7.95% 25.95% 0.9647 214
HAR-V-LN (10) 0.021774 0.0020 0.0109 -7.81% 25.81% 0.9653 1131
HAR-PC-LN (11) 0.022963 0.0011 0.0117 -24.83% 35.72% 1.0491 219
HAR-J-LN (12) 0.021576 0.0022 0.0106 -10.13% 26.62% 0.9586 585
HAR-V-PC-LN (13) 0.021910 0.0000 0.0117 -26.78% 37.38% 1.0932 214
HAR-V-J-LN (14) 0.021808 0.0024 0.0107 -11.65% 28.26% 0.9790 509
HAR-PC-J-LN (15) 0.022875 0.0011 0.0117 -9.56% 26.57% 0.9645 219
HAR-V-PC-J-LN (16) 0.021681 0.0030 0.0117 -9.11% 26.44% 0.9653 216
Mean (17) 0.021275 0.0002 0.0112 -12.56 % 26.80% 0.9542 ——
WM (18) 0.021259 0.0002 0.0112 -12.55% 26.80% 0.9541 ——

As mentioned before, the differences in the forcasting performance statistics are minimal,
so it is not possible to conclude which models produce the best results. To better adress this issue the
Diebold-Mariano test is used (Table 5.3).

In most cases (137 out of 153), the test value is in the range [-1.96, 1.96], which means
that there are no significant differences at the 5% level in the compared forecasts. It is therefore
important to analyze what happens in the other 16 tests (marked in bold in the table). The HAR-J-LN
(12) model immediately stands out because it presents superior results in relation to seven models,
which leads us to conclude that the introduction of the jumps variable together with the logarithm
produces more accurate forecasts. Other models such as HAR-V-LN, HAR-V-J-LN, arithmetic mean,
and the weighted mean also show good results. These results put into perspective that volume may
help forecasting Bitcoin realized volatility and that the combination of forecasts from several models
also may provide marginal forecasting benefits. Clearly, Blockchain information and other market
information do not increase forecasting accuracy.
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Chapter 6

Conclusion

This paper aims to contribute to the existing literature related to forecasting Bitcoin realized
volatility by adding two aspects that have, so far, been scarcely explored. Firstly, realized volatility is
computed from several exchanges and not from only one, which gives a better picture on the overall
Bitcoin market. Secondly, it additionally considers Blockchain and other market information into
HAR models as exogenous variables. Other papers have already used some information from the
Blockchain in their models however, by using PCA we reduced the size of the dataset (from 139 to 3)
while taking into account most of its information.

Using 5-minute data covering the period from January 1, 2015, through October 19, 2021, we
implemented several HAR-type models to forecast 1-day ahead volatility. One of the main conclusions
to be drawn from the results is that none of the eight models where Blockchain information was
introduced, produces superior results compared to the other models. Another interesting result is that
3 of the eight models, where logarithms are used, produce the best predictions (conclusions drawn
by analyzing the Diebold-Mariano tests), with the HAR-J-LN model demonstrating superior results,
which leads us to conclude that the introduction of logarithms can improve predictions. The fact that
the average forecasts (Mean and Weighted Mean) show interesting results, both in the forecasting
statistics and in the Diebold-Mariano test (in terms of the RMSE statistic, these predictions present
the best values), highlights that there is no model significantly superior to the others. If one forecast is
more accurate than the others, one would expect their combination to produce worse results, however,
this is not the case.

The main conclusions of this work could be further sustained (or refuted) by exploring some
aspects such as: extending the forecast horizon beyond 1-day (forecasting for 7, 14, or 30 days
following what has been usual in other papers) or applying other models like the HAR-RS which uses
signed semi-variances, or HARQ-type models that use realized quarticity.
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Appendix A

Description of market and blockchain
variables

Table A.1 Description of the Variables Collected from Coinmetrics

ID Name Description

AdrActCnt Active Adresses

The sum count of unique addresses that were active in
the network (either as a destination or source of a ledger
change) that day. All parties in a ledger change action
(source and destination) are counted. Individual addresses
are not double-counted if previously active.

AdrBal1in100KCnt
Addr Cnt with ≥
0.001% Supply

The sum count of unique addresses holding at least 0.001%
of the current supply of native units as of the end of that
day. Only native units are considered (e.g., an address with
less than one hundred-thousandth ETH but with ERC-20
tokens would not be considered).

AdrBal1in100MCnt
Addr Cnt with ≥
0.000001% Supply

... at least 0.000001%...

AdrBal1in10BCnt
Addr Cnt with ≥
0.00000001% Sup-
ply

... at least 0.00000001%...

AdrBal1in10KCnt
Addr Cnt with ≥
0.01% Supply

... at least 0.01%...

Continues on the next page
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28 Description of market and blockchain variables

ID Name Description

AdrBal1in10MCnt
Addr Cnt with ≥
0.00001% Supply

... at least 0.00001%...

AdrBal1in1BCnt
Addr Cnt with ≥
0.0000001% Sup-
ply

... at least 0.0000001%...

AdrBal1in1KCnt
Addr Cnt with ≥
0.1% Supply

... at least 0.1% ...

AdrBal1in1MCnt
Addr Cnt with ≥
0.0001% Supply ...
at least 0.0001% ...

AdrBalCnt
Address Cnt Bal >
0

The sum count of unique addresses holding any amount of
native units as of the end of that day. Only native units are
considered.

AdrBalNtv0.001Cnt
Addr Cnt of Bal ≥
0.001 (native units)

The sum count of unique addresses holding at least 0.001
native units as of the end of that day. Only native units are
considered.

AdrBalNtv0.01Cnt
Addr Cnt of Bal ≥
0.01 (native units)

... at least 0.01 ...

AdrBalNtv0.1Cnt
Addr Cnt of Bal ≥
0.1 (native units)

... at least 0.1 ...

AdrBalNtv100Cnt
Addr Cnt of Bal ≥
100 (native units)

... at least 100 ...

AdrBalNtv100KCnt
Addr Cnt of Bal ≥
100K (native units)

... at least 100k ...

AdrBalNtv10Cnt
Addr Cnt of Bal ≥
10 (native units)

... at least 10 ...

AdrBalNtv10KCnt
Addr Cnt of Bal ≥
10K (native units)

... at least 10k ...

Continues on the next page
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ID Name Description

AdrBalNtv1Cnt
Addr Cnt of Bal ≥
1 (native units)

... at least 1 ...

AdrBalNtv1KCnt
Addr Cnt of Bal ≥
1K (native units)

... at least 1k ...

AdrBalNtv1MCnt
Addr Cnt of Bal ≥
1M (native units)

... at least 1M ...

AdrBalUSD100Cnt
Addr Cnt of Bal ≥
$100

The sum count of unique addresses holding at least $100 as
of the end of that day. Only native units are considered (e.g.,
an address with less than $100 but with more than $100 in
ERC-20 tokens would not be considered).

AdrBalUSD100KCnt
Addr Cnt of Bal ≥
$100K

... at least $100K ...

AdrBalUSD10Cnt
Addr Cnt of Bal ≥
$10

... at least $10 ...

AdrBalUSD10KCnt
Addr Cnt of Bal ≥
$10K

... at least $10K ...

AdrBalUSD10MCnt
Addr Cnt of Bal ≥
$10M

... at least $10M ...

AdrBalUSD1Cnt
Addr Cnt of Bal ≥
$1

... at least $1 ...

AdrBalUSD1KCnt
Addr Cnt of Bal ≥
$1K

... at least frm[o]–K...

AdrBalUSD1MCnt
Addr Cnt of Bal ≥
$1M

... at least $1M ...

AssetEODCompletionTime Completion Time
The time that the last metric for the asset was calculated,
indicating that all metrics for that asset have been calculated

BlkCnt Block Cnt
The sum count of blocks created that interval that were
included in the main (base) chain.

BlkSizeMeanByte
Mean Block Size
(in bytes)

The mean size (in bytes) of all blocks created that interval.

Continues on the next page



30 Description of market and blockchain variables

ID Name Description

BlkWghtMean Mean Block Weight
The mean weight of all blocks created that interval. Weight
is a dimensionless measure of a block’s “size”. It is only
applicable for chains that use SegWit (segregated witness).

BlkWghtTot Sum Block Weight
The sum weight of all blocks created that interval. Weight
is a dimensionless measure of a block’s “size”. It is only
applicable for chains that use SegWit (segregated witness).

CapAct1yrUSD
Active Market Cap
(1yr) (USD)

The sum USD value of all active native units in the last
year. Native units that transacted more than once are only
counted once.

CapMVRVCur
MVRV (Market
Cap / Realized
Market Cap)

The ratio of the sum USD value of the current supply to the
sum "realized" USD value of the current supply.

CapMVRVFF

Free Float MVRV
(Free Float Market
Cap / Realized Mar-
ket Cap)

The ratio of the free float market capitalization (CapMrk-
tFFUSD) to the sum "realized" USD value of the current
supply (CapRealUSD).

CapMrktCurUSD Market Cap (USD)
The sum USD value of the current supply. Also referred to
as network value or market capitalization.

CapMrktFFUSD
Free Float Market
Cap (USD)

The sum USD value of the free float supply. Also referred
to as free float network value or free float market capitaliza-
tion.

CapRealUSD
Realized Market
Cap (USD)

The sum USD value based on the USD closing price on the
day that a native unit last transacted for all native units.

DiffLast Difficulty

The difficulty of the last block in the considered time period.
Difficulty represents how hard it is to find a hash that meets
the protocol-designated requirement (i.e., the difficulty of
finding a new block) that day. The requirement is unique
to each applicable cryptocurrency protocol. Difficulty is
adjusted periodically by the protocol as a function of how
much hashing power is being deployed by miners.

Continues on the next page
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ID Name Description

DiffMean

FeeByteMeanNtv
Mean Tx Fee per
Byte (native units)

The mean transaction fee per byte of all blocks that interval
in native units.

FeeMeanNtv
Mean Tx Fee (na-
tive units)

The mean fee per transaction in native units that interval.

FeeMeanUSD
Mean Tx Fee
(USD)

The sum USD value of the mean fee per transaction that
interval.

FeeMedNtv
Median Tx Fee (na-
tive units)

The median fee per transaction in native units that interval.

FeeMedUSD
Median Tx Fee
(USD)

The sum USD value of the median fee per transaction that
day.

FeeTotNtv
Total Fees (native
units)

The sum native units value of all fees paid to miners, transac-
tion validators, stakers and/or block producers that interval.
In certain cryptonetworks, fees might be burned (destroyed),
but they are still accounted for in this metric.

FeeTotUSD Total Fees (USD)

The sum USD value of all fees paid to miners, transaction
validators, stakers and/or block producers that interval. In
certain cryptonetworks, fees might be burned (destroyed),
but they are still accounted for in this metric.

FlowInExNtv
Exchange Deposits
(native units)

The sum number of native units sent to exchanges that
interval, excluding exchange to exchange activity

FlowInExUSD
Exchange Deposits
(USD)

The sum USD value sent to exchanges that interval, exclud-
ing exchange to exchange activity.

FlowOutExNtv
Exchange With-
drawals (native
units)

The sum in native units withdrawn from exchanges that day,
excluding exchange to exchange activity.

FlowOutExUSD
Exchange With-
drawals (USD)

The sum USD value withdrawn from exchanges that day,
excluding exchange to exchange activity

Continues on the next page
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ID Name Description

FlowTfrFromExCnt
Exchange With-
drawal Cnt

The sum count of transfers from any address belonging to
an exchange in that interval. Transfers between exchanges
are not counted.

HashRate Mean Hash Rate

The mean rate at which miners are solving hashes that day.
Hash rate is the speed at which computations are being
completed across all miners in the network. The unit of
measurement varies depending on the protocol.

HashRate30d
Mean Hash Rate,
30 Day

The mean rate at which miners are solving hashes over the
last 30 days.

IssContNtv
Coinbase Issuance
(native units)

The sum of native units issued that day. Only those native
units that are issued by a protocol-mandated continuous
emission schedule are included.

IssContPctAnn
Annual Inflation
Rate

The percentage of new native units (continuous) issued on
that day, extrapolated to one year (i.e., multiplied by 365),
and divided by the current supply on that day. Sometimes
referred to as the annual inflation rate.

IssContPctDay Daily Inflation Rate
The percentage of new native units (continuous) issued on
that day divided by the current supply on that day. Also
referred to as the daily inflation rate.

IssContUSD
Coinbase Issuance
(USD)

The sum of USD value issued that day. Only those native
units that are issued by a protocol-mandated continuous
emission schedule are included.

IssTotNtv
Total Issuance (na-
tive units)

The sum of all new native units issued that day.

IssTotUSD
Total Issuance
(USD)

The sum USD value of all new native units issued that day.

NDF
NDF (Network Dis-
tribution Factor)

The ratio of supply held by addresses with at least one
ten-thousandth of the current supply of native units to the
current supply.
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ID Name Description

NVTAdj NVT
The ratio of the network value (or market capitalization,
current supply) divided by the adjusted transfer value. Also
referred to as NVT.

NVTAdj90
NVT 90-day Mov-
ing Avg

The ratio of the network value (or market capitalization,
current supply) to the 90-day moving average of the adjusted
transfer value. Also referred to as NVT.

NVTAdjFF Free Float NVT
The ratio of the free float network value (or market capi-
talization, free float) divided by the adjusted transfer value.
Also referred to as FFNVT.

NVTAdjFF90
Free Float NVT 90-
day Moving Avg

The ratio of the free float network value (or market capi-
talization, free float) to the 90-day moving average of the
adjusted transfer value. Also referred to as FFNVT.

PriceBTC
BTC Denominated
Price

The fixed closing price of the asset as of 00:00 UTC the
following day (i.e., midnight UTC of the current day) de-
nominated in BTC.

PriceUSD
USD Denominated
Price

The fixed closing price of the asset as of 00:00 UTC the
following day (i.e., midnight UTC of the current day) de-
nominated in USD.

ROI1yr ROI, 1 Year
The return on investment for the asset assuming a purchase
12 months prior.

ROI30d ROI, 30 Days
The return on investment for the asset assuming a purchase
30 days prior.

RevAllTimeUSD
All Time Miner
Revenue (USD)

The sum USD value of all miner revenue (fees plus newly
issued native units) for all time.

RevHashNtv
Miner Revenue per
Hash (native units)

The mean miner reward per estimated hash unit performed
during the period, in native units. The unit of hashpower
measurement depends on the protocol.
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ID Name Description

RevHashRateNtv
Miner Revenue per
Hash per Sec (na-
tive units)

The mean daily miner reward per estimated hash unit per
second performed during the period, in native units.

RevHashRateUSD
Miner Revenue
per Hash per Sec
(USD)

The USD value of the mean daily miner reward per esti-
mated hash unit per second performed during the period,
also known as hashprice.

RevHashUSD
Miner Revenue per
Hash (USD)

The mean miner reward per estimated hash unit performed
during the period, in USD.

RevNtv
Miner Revenue (na-
tive units)

The sum native units of miner revenue (fees plus newly
issued native units) that interval.

RevUSD
Miner Revenue
(USD)

The sum USD value of all miner revenue (fees plus newly
issued native units) that day.

SER
SER (Supply Equal-
ity Ratio)

The ratio of supply held by addresses with less than one
ten-millionth of the current supply of native units to the
supply held by the top one percent of addresses.

SplyAct10yr
10 Year Active Sup-
ply

The sum of unique native units that transacted at least once
in the trailing 10 Years up to that interval. Native units that
transacted more than once are only counted once.

SplyAct180d
180 Day Active
Supply

... trailing 180 days ...

SplyAct1d
1 Day Active Sup-
ply

... trailing 1 day ...

SplyAct1yr
1 Year Active Sup-
ply

... trailing 1 year ...

SplyAct2yr
2 Year Active Sup-
ply

... trailing 2 years ...

SplyAct30d
30 Day Active Sup-
ply

... trailing 30 days ...
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ID Name Description

SplyAct3yr
3 Year Active Sup-
ply

... trailing 3 years ...

SplyAct4yr
4 Year Active Sup-
ply

... trailing 4 years ...

SplyAct5yr
5 Year Active Sup-
ply

... trailing 5 years ...

SplyAct7d
7 Day Active Sup-
ply

... trailing 7 days ...

SplyAct90d
90 Day Active Sup-
ply

... trailing 90 days ...

SplyActEver
Active Supply
(transacted at least
once)

The sum of unique native units held by accounts that trans-
acted at least once up to that interval. Native units that
transacted more than once are only counted once.

SplyActPct1yr
1 Year Active Sup-
ply %

The percentage of the current supply that has been active in
the trailing 1 year up to that day.

SplyAdrBal1in100K
Val in Addrs w/ Bal
≥ 0.001% of Cur-
rent Supply

The sum of all native units being held in addresses whose
balance was at least 0.001% of the current supply of native
units as the end of that day. Only native units are considered.

SplyAdrBal1in100M
Val in Addrs w/
Bal ≥ 0.000001%
of Current Supply

... at least 0.000001% ...

SplyAdrBal1in10B
Val in Addrs w/ Bal
≥ 0.00000001% of
Current Supply

... at least 0.00000001% ...

SplyAdrBal1in10K
Val in Addrs w/ Bal
≥ 0.01% of Current
Supply

... at least 0.01% ...
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ID Name Description

SplyAdrBal1in10M
Val in Addrs w/ Bal
≥ 0.00001% of Cur-
rent Supply

... at least 0.00001% ...

SplyAdrBal1in1B
Val in Addrs w/ Bal
≥ 0.0000001% of
Current Supply

... at least 0.0000001% ...

SplyAdrBal1in1K
Val in Addrs w/ Bal
≥ 0.1% of Current
Supply

... at least 0.1% ...

SplyAdrBal1in1M
Val in Addrs w/ Bal
≥ 0.0001% of Cur-
rent Supply

... at least 0.0001% ...

SplyAdrBalNtv0.001
Val in Addrs w/
Bal ≥ 0.001 (native
units)

The sum of all native units being held in addresses whose
balance was at least 0.001 native units at the end of that day.
Only native units are considered.

SplyAdrBalNtv0.01
Val in Addrs w/
Bal ≥ 0.01 (native
units)

... at least 0.01 ...

SplyAdrBalNtv0.1
Val in Addrs w/ Bal
≥ 0.1 (native units)

... at least 0.1 ...

SplyAdrBalNtv1
Val in Addrs w/ Bal
≥ 1 (native units)

... at least 1 ...

SplyAdrBalNtv10
Val in Addrs w/ Bal
≥ 10 (native units)

... at least 10 ...

SplyAdrBalNtv100
Val in Addrs w/ Bal
≥ 100 (native units)

... at least 100 ...

SplyAdrBalNtv100K
Val in Addrs w/
Bal ≥ 100K (native
units)

... at least 100K ...
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SplyAdrBalNtv10K
Val in Addrs w/
Bal ≥ 10K (native
units)

... at least 10K ...

SplyAdrBalNtv1K
Val in Addrs w/ Bal
≥ 1K (native units)

... at least 1K ...

SplyAdrBalNtv1M
Val in Addrs w/ Bal
≥ 1M (native units)

... at least 1M ...

SplyAdrBalUSD1
Val in Addrs w/ Bal
≥ $1 USD

The sum of all native units being held in addresses whose
balance was at least $1 at the end of that day. Only native
units are considered.

SplyAdrBalUSD10
Val in Addrs w/ Bal
≥ $10 USD

... at least $10 ...

SplyAdrBalUSD100
Val in Addrs w/ Bal
≥ $100 USD

... at least $100 ...

SplyAdrBalUSD100K
Val in Addrs w/ Bal
≥ $100k USD

... at least $100K ...

SplyAdrBalUSD10K
Val in Addrs w/ Bal
≥ $10k USD

... at least $10K ...

SplyAdrBalUSD10M
Val in Addrs w/ Bal
≥ $10M USD

... at least $10M ...

SplyAdrBalUSD1K
Val in Addrs w/ Bal
≥ $1K USD

... at least $1K ...

SplyAdrBalUSD1M
Val in Addrs w/ Bal
≥ $1M USD

... at least $1M ...

SplyAdrTop100
Value in Top 100
Addrs (native units)

The sum of all native units held by the richest 100 addresses
at the end of that time interval.
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ID Name Description

SplyAdrTop10Pct
Value in Top 10%
of Addrs (native
units)

The sum of all native units held by the richest 10% of
addresses at the end of that interval.

SplyAdrTop1Pct
Value in Top 1% of
Addrs (native units)

The sum of all native units held by the richest 1% of ad-
dresses at the end of that interval.

SplyCur

SplyExpFut10yr
10 Year Expected
Supply (native
units)

The sum of all native units counting current supply and
including all those expected to be issued over the next 10
years from that day if the current known continuous issuance
schedule is followed. Future expected hard-forks that will
change the continuous issuance are not considered until the
day they are activated/enforced.

SplyFF

SplyMiner0HopAllNtv
Miner Supply (na-
tive units)

The sum of the balances of all mining entities. A mining
entity is defined as an address that has been credited from a
transaction debiting the ’FEES’ or ’ISSUANCE’ accounts
in accordance with Coin Metric’s Universal Blockchain
Data Model (UBDM).

SplyMiner0HopAllUSD

SplyMiner1HopAllNtv
Supply One Hop
from Miners (native
units)

The sum of the balances of all addresses within one hop
of a mining entity. An address within one hop of a mining
entity is defined as an address that has been credited from a
transaction debiting the ’FEES’ or ’ISSUANCE’ accounts
in accordance with Coin Metric’s Universal Blockchain
Data Model (UBDM), or any address that has been credited
in a transaction sent by such an address.

SplyMiner1HopAllUSD
Supply One Hop
from Miners (USD)
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TxCnt Tx Cnt

The sum count of transactions that day. Transactions repre-
sent a bundle of intended actions to alter the ledger initiated
by a user (human or machine). On certain occasions, trans-
actions are counted regardless of whether they result in the
transfer of native units or not. As long as such transactions
are recorded on the chain, they will be included in the calcu-
lation of this metric. Changes to the ledger algorithmically
mandated by the protocol, such as coinbase transactions or
post-launch new issuance, are not included here.

TxCntSec Tx per Second Cnt
The sum count of transactions divided by the number of
seconds that day.

TxTfrCnt Xfer Cnt The sum count of transfers that interval.

TxTfrValAdjNtv
Xfer’d Val, Adj (na-
tive units)

The sum of native units transferred that interval removing
noise and certain artifacts. Also known as Adjusted Transfer
Value (native units).

TxTfrValAdjUSD
Xfer’d Val, Adj
(USD)

The USD value of the sum of native units transferred that
interval removing noise and certain artifacts. Also known
as Adjusted Transfer Value (USD).

TxTfrValMeanNtv
Mean Tx Size (na-
tive units)

The sum value of native units transferred divided by the
count of transfers (i.e., the mean size of a transfer) between
distinct addresses that interval.

TxTfrValMeanUSD
Mean Tx Size
(USD)

The sum USD value of native units transferred divided by
the count of transfers (i.e., the mean "size" in USD of a
transfer) that interval.

TxTfrValMedNtv
Median Tx Size (na-
tive units)

The median count of native units transferred per transfer
(i.e., the median "size" of a transfer) that interval.

TxTfrValMedUSD
Median Tx Size
(USD)

The median USD value transferred per transfer (i.e., the
median "size" in USD of a transfer) that interval.
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ID Name Description

VelCur1yr
1 Year Current Sup-
ply Velocity

The ratio of the value transferred (i.e., the aggregate "size"
of all transfers) in the trailing 1 year divided by the current
supply on that day. It can be thought of as a rate of turnover
– the number of times that an average native unit has been
transferred in the past 1 year.

VtyDayRet180d 180 Day Volatility
The 180 days volatility, measured as the deviation of log
returns

VtyDayRet30d 30 Day Volatility
The 30 days volatility, measured as the deviation of log
returns
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