

José Nuno da Cruz Faria

WIRELESS IOT SMART BED SYSTEM

Dissertação no âmbito do Mestrado Integrado em Engenharia

Física, ramo de Instrumentação orientada pelo Doutor David Bina
Siassipour Portugal, coorientada pelo Prof. Doutor Mahmoud

Tavakoli e apresentada ao Departamento de Física da Faculdade
de Ciências e Tecnologia da Universidade de Coimbra

Fevereiro de 2022

Wireless IoT Smart Bed System

José Nuno da Cruz Faria

Coimbra, February 2022

Wireless IoT Smart Bed System

Supervisor:

Doctor David B. S. Portugal

Co-Supervisor:
Prof. Doctor Mahmoud Tavakoli

Jury:

Prof. Doctor António Miguel Lino Santos Morgado

Prof. Doctor Paulo José Monteiro Peixoto

Doctor David Bina Siassipour Portugal

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Engineering Physics.

Coimbra, February 2022

Acknowledgments

During these last years, several people have been paramount for the conclusion of this

thesis, and as such, I would like to acknowledge all of those who helped me in some way or

another to achieve this.

First and foremost, I want to thank my family, for their love and care, who supported

and helped me throughout all these years, and without whom I would never be able to

continuously push forward.

I also wish to extend my deepest gratitude to my supervisors, Prof. Mahmoud Tavakoli

and in particular Dr. David Portugal, for his guidance, his continuous support, and for

giving me an opportunity to undertake this challenge and so much more; I will be forever

grateful.

Finally, to my closest friends, Edgar, Idálio, Daniel, Afonso, Gabriel and Brito for putting

up with me all of this time, which I know to be a very troublesome task at times, and being

a helping hand on this journey, thank you.

ii

Resumo

Nos últimos anos, em particular com o desenvolvimento da pandemia COVID-19, temos

observado uma transformação digital continua dos cuidados de saúde. Uma tecnologia em

específico destaca-se, revelando grande potencial para revolucionar o paradigma atual dos

cuidados de saúde – a Internet das Coisas (IoT).

O trabalho desta dissertação consiste no desenvolvimento de uma infrastrutura IoT que

interliga sensores inteligentes vestíveis a um sistema de informação de saúde utilizado por

inúmeros hospitais nacionais. Em particular, é efetuada uma avaliação de diferentes placas

de hardware IoT comuns para determinar que placa será utilizada para a infraestrutura de

aquisição de dados, além de uma análise extensiva da comunicação Bluetooth Low Energy

(BLE) para avaliar os dispositivos utilizados para efetuar a comunicação BLE. No âmbito

deste trabalho foi também proposta uma especificação para comunicação Message Queuing

Telemetry Transport (MQTT), tal como o desenvolvimento de uma Interface de Programação

de Aplicações (API) usando o protocolo Fast Healthcare Interoperability Resources (FHIR),

que é um dos protocolos mais utilizados para a transmissão de informação de saúde no

ambiente de software clínico, para integrar a infraestrutura no sistema de informação de

saúde, juntamente com uma arquitetura de serviços para o servidor edge, desenhado com

segurança e privacidade em mente.

A plataforma desenvolvida é validada através de um ensaio em instalações hospitalares

e testes em ambiente controlado, nos quais a infraestrutura mostrou uso eficiente de recur-

sos, disponibilidade máxima e boa segurança, fornecendo uma base sólida para continuar o

desenvolvimento e expandir as funcionalidades existentes do sistema.

Palavras-chave: Internet das Coisas; FHIR; MQTT; Bluetooth Low Energy; Cuidados

de saúde; Sensores vestíveis.

iii

Abstract

In the past years, especially with the COVID-19 pandemic, we have observed the continu-

ous digital transformation of healthcare. But there is one technology in particular that shows

potential to revolutionize the current healthcare paradigm – the Internet of Things (IoT).

This work focuses on the development of a secure Internet of Things infrastructure

which connects wireless, wearable, and intelligent sensors to a health information system

used by multiple national hospitals. In particular, an extensive benchmarking of common

IoT hardware platforms to serve as IoT acquisition nodes is performed, and an analysis

of Bluetooth Low Energy (BLE) communication protocol to evaluate the adequacy of the

devices used to implement it. Additionally, a specification for Message Queuing Teleme-

try Transport (MQTT) communication is also proposed, as well as the development of

an Application Programming Interface (API) using Fast Healthcare Interoperability Re-

sources (FHIR), an open standard widely used in health informatics for exchanging electronic

health records, to integrate the IoT infrastructure with the health information system, cou-

pled with an efficient service architecture for the edge server, designed with security and

privacy in mind.

The work is validated both through trials within hospital facilities and controlled labora-

tory tests, in which the infrastructure shows efficient resource usage, maximum availability

and security, providing solid foundations for future work to build upon.

Keywords: Internet of Things; FHIR; MQTT; Bluetooth Low Energy; Healthcare; Wear-

able sensors.

iv

Contents

Acknowledgements ii

Resumo iii

Abstract iv

List of Acronyms ix

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Context . 1

1.2 System Requirements . 2

1.3 Dissertation Structure . 3

2 State of the Art 4

2.1 Internet of Things . 4

2.1.1 Fundamentals of IoT . 4

2.2 A Reference Model for Pervasive Healthcare Applications 5

2.2.1 Layer 1: Physical Devices and Controllers 6

2.2.2 Layer 2: Connectivity . 7

2.2.3 Layer 3: Edge (Fog) Computing . 13

2.2.4 Layer 4: Data Accumulation . 13

2.2.5 Layer 5: Data Abstraction . 16

2.2.6 Layer 6: Application . 17

2.2.7 Layer 7: Collaboration and Processes 17

2.3 Survey on IoT Applications for Healthcare 17

vi

2.3.1 Weaknesses of literature . 21

2.4 Statement of Contributions . 22

2.5 Summary . 23

3 Smart box Development 25

3.1 Deciding on a Hardware Platform . 27

3.1.1 Comparing the Hardware Platforms 30

3.1.2 Final Decision on Smart box hardware 36

3.2 Communication with the Biostickers . 36

3.2.1 Technical Background . 37

3.2.2 Choosing a BLE adapter . 42

3.2.3 Testing BLE Communication . 42

3.2.4 Decision on the BLE adapter . 53

3.3 Summary . 53

4 Smart Gateway Development 55

4.1 Service Architecture . 56

4.2 Data Storage . 58

4.2.1 Database Schema . 58

4.3 Connection to the Smart boxes . 65

4.3.1 Proposed MQTT Specification . 65

4.3.2 Authorization and Authentication Plugin 67

4.4 Data pre-processing . 69

4.5 HIS FHIR Integration . 70

4.5.1 FHIR Server . 71

4.6 Summary . 74

5 Experimental Validation 75

5.1 Hospital Pilot . 75

5.1.1 Results and Discussion . 76

5.2 Laboratory Tests . 80

5.2.1 Results and Discussion . 80

5.3 Summary . 83

vii

6 Conclusion 84

6.1 Future Work . 84

Bibliography 86

A MQTT Payload Formats 91

B FHIR Resource JSON Representations 93

viii

List of Acronyms

API Application Programming Interface

ATT Attribute Protocol

BLE Bluetooth Low Energy

CoAP Constrained Application Protocol

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

DLE Data Length Extension

ECG Electrocardiogram

EHR Eletronic Health Record

EPC/RFID EPCglobal Gen2 RFID

FHIR Fast Healthcare Interoperability Resources

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

HIS Health Information System

HTTP Hypertext Transfer Protocol

IMU Inertial Measurement Unit

IP Internet Protocol

IPC Interprocess communication

ix

ISR Institute of Systems and Robotics

IT Information Technology

IoT Internet of Things

JSON JavaScript Object Notation

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

MQTT Message Queuing Telemetry Transport

MTU Maximum Transmission Unit

NTP Network Time Protocol

OSI Open System Interconnection

PDU Protocol Data Unit

PHY Physical Layer

PPG Photoplethysmography

RAM Random Access Memory

RBAC Role-based access control

RDBMS Relational Database Management System

RFID Radio-frequency Identification

SBC Single Board Computer

SIG Special Interest Group

SMP Security Manager

SQL Structured Query Language

SoC System on a Chip

TCP Transmission Control Protocol

TLS Transport Layer Security

x

UI User Interface

UUID Universally Unique Identifier

WBAN Wireless Body Area Network

WoW Wireless biOmonitoring stickers and smart bed architecture:

toWards Untethered Patients

XML Extensible Markup Language

xi

List of Figures

2.1 IoT reference model published by IoTWF. 6

2.2 Diagram of a MQTT message sequence. 12

2.3 Diagram of a CoAP message sequence. 12

2.4 Differences between the cloud offerings and on-premise solutions. 14

2.5 System architecture of the WoW project. 23

3.1 Illustration of the Biostickers. 25

3.2 Illustration of the developer UI for debugging the Smart box acquisition, de-

signed by the WoW research team at ISR. 26

3.3 Raspberry Pi 4B. 28

3.4 UDOO BOLT V3. 29

3.5 Custom Python benchmark for the Raspberry Pi 4B and UDOO BOLT V3. 31

3.6 Phoronix benchmarks for the UDOO BOLT V3 and Raspberry Pi 4B. 34

3.7 MQTT benchmark for Raspberry Pi 4B and UDOO BOLT V3. 35

3.8 Diagram of the different components of the BLE protocol stack. 37

3.9 Diagram of the BLE data packet format for LE 1M PHY. 40

3.10 Message sequence chart between two BLE devices during a Connection Event. 41

3.11 Setup used for all BLE tests. 44

3.12 Average BLE connection roundtrip time obtained using the Raspberry Pi 4B’s

internal BLE adapter at a distance of 0 m. 45

3.13 Average BLE connection roundtrip time obtained using the Raspberry Pi 4B’s

internal BLE adapter at a distance of 3 m. 45

3.14 Average BLE connection roundtrip time obtained using the Raspberry Pi 4B’s

internal BLE adapter at a distance of 6 m. 45

3.15 Average BLE connection roundtrip time obtained using the Raspberry Pi 4B’s

internal BLE adapter at a distance of 9 m. 45

xii

3.16 Average BLE connection roundtrip time obtained using the ASUS USB-BT500

adapter at a distance of 0 m. 46

3.17 Average BLE connection roundtrip time obtained using the ASUS USB-BT500

adapter at a distance of 3 m. 46

3.18 Average BLE connection roundtrip time obtained using the ASUS USB-BT500

adapter at a distance of 6 m. 46

3.19 Average BLE connection roundtrip time obtained using the ASUS USB-BT500

adapter at a distance of 9 m. 46

3.20 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 0 m. 49

3.21 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 3 m. 49

3.22 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 6 m. 50

3.23 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 9 m. 50

3.24 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 0 m. 50

3.25 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 3 m. 50

3.26 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 6 m. 51

3.27 BLE connection bandwidth obtained using the ASUS USB-BT500 adapter at

a distance of 9 m. 51

4.1 Intel NUC NUC8i7BEH. 55

4.2 Service architecture implemented in the Smart Gateway. 57

4.3 Database model implemented in the Smart Gateway. 59

4.4 Components of the database model used to describe system information. . . 60

4.5 Components of the database model used to describe MQTT information. . . 62

4.6 Components of the database model used to describe sensor measurements. . 62

4.7 Components of the database model used to describe information used for FHIR. 63

4.8 Flowchart describing how a MQTT client is authenticated by the MQTT broker. 68

xiii

4.9 Flowchart describing how an authenticated MQTT client’s request is autho-

rized by the MQTT broker. 69

4.10 Flowchart describing how incoming MQTT messages are processed by the

data pre-processing service. 70

4.11 Sequence diagram describing the read interaction on FHIR Device resource. . 72

4.12 Sequence diagram describing the communication of sensor data to the HIS. . 74

5.1 Conceptual illustration of the system components within a medical facility. . 76

5.2 MQTT payload sizes measured for each type of biosignal sensor message dur-

ing the hospital trial. 77

5.3 Average MQTT bandwidth usage measured over time during the hospital trial. 77

5.4 Average FHIR bandwidth usage measured over time during the hospital trial. 77

5.5 CPU usage of each Smart Gateway service measured over time during the

hospital trial. 79

5.6 RAM usage of each Smart Gateway service measured over time during the

hospital trial. 79

5.7 Average MQTT bandwidth usage measured over time during the lab tests. . 81

5.8 Average MQTT latency measured over time during the lab tests. 81

5.9 Average RAM usage of each Smart Gateway service measured over time during

the lab tests, when using the custom plugin for Mosquitto. 82

5.10 Average RAM usage of each Smart Gateway service measured over time during

the lab tests, without using the custom plugin for Mosquitto. 82

5.11 Average CPU usage of each Smart Gateway service measured over time during

the lab tests, when using the custom plugin for Mosquitto. 82

5.12 Average CPU usage of each Smart Gateway service measured over time, with-

out using the custom plugin for Mosquitto. 82

5.13 Image of the GlobalCare HIS user interface showing measurements sent by

the Smart Gateway. 83

xiv

List of Tables

2.1 Type of sensors commonly used in pervasive healthcare applications. 7

2.2 Overview of the most common communication protocols used within short

range . 10

2.3 Comparison between CoAP and MQTT protocols. 11

2.4 Comparison between SQL and NoSQL database technologies. 15

2.5 Comparison between different pervasive healthcare applications. 20

3.1 Specifications of the Raspberry Pi 4B and UDOO BOLT V3. 30

3.2 BLE connection parameters used for the ASUS USB-BT500 adapter. 43

3.3 BLE connection parameters used for internal Raspberry Pi 4B adapter. . . . 43

4.1 Intel NUC Kit NUC8i7BEH specification. 55

4.2 Correspondence between the Smart Gateway services and its functional com-

ponents. 57

xv

1 Introduction

1.1 Context

Due to all the technological and healthcare advances over the last years, we have observed

a steady increase of life expectancy. With the growing aging population a rise of chronic

illnesses can be noticed, which places significant strain on modern healthcare systems due

to their limited resources [1, 2] - both human and material like medical equipment, hospital

beds, etc. This is an evermore pressing concern, particularly with the recent Covid-19

epidemic, that is testing the limits of current healthcare systems.

In an effort to counter this, many countries and organizations are currently promoting the

shift towards digital healthcare through several funding programs, such as European Union

[3] and World Health Organization initiatives [4]. The usage of digital technologies in health

has the potential to radically change how healthcare is delivered, by enhancing the efficiency

and cost-effectiveness of care, and enabling new business models for service providers [4].

In particular, there is one paradigm which has stood out, having potential to fulfill this

vision for digital health – Internet of Things (IoT). IoT has been used to revolutionize

different industries, such as smart grids [5], oil and gas industry [6] and many more. The ba-

sic concept of IoT is enabling processing capability and connectivity of “physical objects” or

groups of these, allowing them to be capable of connecting with other devices and exchange

data through the Internet [7]. Today, hospitalized patients need to be wired to various mea-

surement instruments when continuous biomonitoring is required. IoT is not only capable

of challenging this restriction, detaching patients from their beds and restoring their much-

needed comfort (perhaps even allowing them to return to their own homes) [8], but also

provide value to the various stakeholders in the healthcare system with the automatization

of processes, continuous and remote monitoring, clinical decision support, etc.

1

However, there are still many challenges to tackle before deploying such technologies in

a medical environment. In particular, interoperability, security, and privacy are challenges

which are recurrently identified in the literature.

Any device that is exposed to the Internet is a possible security liability, and thus the

development of efficient security measures is crucial to ensure that data remains private.

Moreover, the adoption of these novel systems can be often met with much objection

from the clinical staff due to their mistrust of technology [9]. To facilitate their deployment

in hospitals, these need to be integrated easily in existing Health Information Systems (HIS).

1.2 System Requirements

Previous work by researchers at the Institute of Systems and Robotics (ISR) has resulted in

the development of innovative wearable devices, designated Biostickers, which are electronic

patches equipped with sensors that gather the patient’s physiological signals and communi-

cate wirelessly [10].

The main objective of this dissertation work is the development and validation

of an IoT architecture capable of integrating the data that is acquired by the Biostickers

into an existing HIS, in the context of the WoW R&D project1. This system serves as the

“backbone” of the entire Information Technology (IT) system for the project, connecting

these Biostickers to the HIS while addressing crucial issues as described previously.

The requirements for the system, and their priorities based on a MoSCoW prioritization

analysis [11], are the following:

• Must:

– The system must be able to communicate with the HIS, i.e. capable of processing

incoming requests and transmit necessary data.

– All communications within the system must be secure, and any sensitive data

cannot be accessed by unauthorized third parties.

– The system must be able to function for long periods of time without continuous

support or maintenance.

– The system must be non-invasive and intuitive.
1WoW – A step towards domiciliary hospitalization: https://inovglintt.com/financiamento/wow/

2

https://inovglintt.com/financiamento/wow/

• Should:

– The system should adopt international standards for exchanging information.

• Could:

– With long-term monitoring, large amounts of information could be gathered to

create valuable datasets that can be used to improve patient monitoring.

• Would:

– For long-term patient monitoring, the system would be capable of identifying

anomalies / biomarkers in patients’ biosignals.

1.3 Dissertation Structure

This document is organized into different sections. The first chapter provides an introduction

to the theme of the dissertation, discussing the context and motivation behind the work

carried out. In the second chapter a brief overview into IoT infrastructures and its healthcare

applications is shown, along with a statement of the contributions of this work. The third

chapter focuses on hardware analysis for one of the IoT system components, the Smart box.

The fourth chapter describes the service architecture within another system component, the

Smart Gateway, which is validated experimentally and analyzed in the fifth chapter. Finally,

in the sixth and final chapter, a reflection upon the work is performed, concluding with a

discussion of completed objectives and on future work.

3

2 State of the Art

In this chapter a survey of pervasive healthcare applications is presented. In order to gain

a greater understanding of the building blocks of a typical Internet of Things (IoT) system,

a reference model for IoT systems is also discussed. With this knowledge, a comparative

analysis of similar works in the literature is presented, identifying the strengths and weak-

nesses of each approach. The chapter is concluded by stating the contributions that this

work proposes to achieve.

2.1 Internet of Things

2.1.1 Fundamentals of IoT

Internet of Things (or IoT) is an emerging communication paradigm, often hailed as the

driver of the Fourth Industrial Revolution [12].

The definition of this concept has evolved over time with the development of other tech-

nologies such as data analytics, embedded systems, sensors, etc. Fundamentally, it can be

described as the following [13]:

IoT addresses the development of networks of smart devices that exchange and process

information through Machine-to-Machine (M2M) communications, usually based on

the Internet Protocol (IP).

This technology enables ubiquitous systems to gather remarkable amounts of information

regarding the surrounding environment, which can later be turned into insight through the

usage of data fusion and data analytics tools, like Machine Learning.

In the specific context of healthcare, this technology can provide many benefits as it

enables remote and continuous health monitoring [14, 15, 16]. It allows non-critical patients

4

to be monitored from the comfort of their own houses, rather than in hospitals or clinics,

reducing the strain on scarce hospital resources such as health professionals or beds. This

is particularly beneficial to those who live in rural areas, with limited access to healthcare

services. It enables elderly people and those with chronic diseases to have greater control

over their own health, thus allowing them to live more independently. Moreover, with the

automatization of medical procedures, these systems can make healthcare infrastructures

more efficient and therefore lower the costs of healthcare [17, 18]. Particularly, in the realm

of clinical research, by analyzing the data collected by these ubiquitous systems, it may

be possible to find new relationships between certain pathologies and different physiological

signals, such as variations in body temperature or heart rate [19]. These correlations, com-

monly referred to as biomarkers, can be used by these systems to assist clinical decisions,

enabling novel predictive, prognostic, and diagnostic processes in healthcare.

2.2 A Reference Model for Pervasive Healthcare Ap-

plications

Reference models provide an abstract framework for designing systems and a set of commonly

recommended practices for the application domain. It serves as a starting point in the design

process, enabling the comprehension of complex systems by breaking them down into simple

and distinct functional layers, while also defining some common terminology used in its

domain.

In 2014, the IoT World Forum (IoTWF) architectural committee published an IoT archi-

tectural reference model, composed by seven layers as shown in Figure 2.1. This model [20]

provides a simple and clean functional view into the different components of an IoT system,

without narrowing the scope or locality of its components. While this model can be used

to generically develop IoT systems for any industry (e.g. from agriculture to smart cities),

in the context of the dissertation our focus will remain on pervasive healthcare applications

and related technologies.

5

© 2014 Cisco and/or its affiliates. All rights reserved. This Draft document is currently Cisco Confidential. Page 3 of 12

A Comprehensive, Multilevel Model for IoT
In an IoT system, data is generated by multiple kinds of devices, processed in different ways, transmitted to
different locations, and acted upon by applications. The proposed IoT reference model is comprised of seven
levels. Each level is defined with terminology that can be standardized to create a globally accepted frame of
reference.

The IoT Reference Model does not restrict the scope or locality of its components. For example, from a physical
perspective, every element could reside in a single rack of equipment or it could be distributed across the world.
The IoT Reference Model also allows the processing occurring at each level to range from trivial to complex,
depending on the situation. The model describes how tasks at each level should be handled to maintain simplicity,
allow high scalability, and ensure supportability. Finally, the model defines the functions required for an IoT system
to be complete.

Figure 1 illustrates the IoT Reference model and its levels. It is important to note that in the IoT, data flows in both
directions. In a control pattern, control information flows from the top of the model (level 7) to the bottom (level 1).
In a monitoring pattern, the flow of information is the reverse. In most systems, the flow will be bidirectional.

Figure 1. The IoT Reference Model

Internet of Things Reference Model
 Levels

Application
(Reporting, Analytics, Control)

Data Abstraction
(Aggregation & Access)

Data Accumulation
(Storage)

Edge (Fog) Computing
(Data Element Analysis & Transformation)

Connectivity
(Communication & Processing Units)

Physical Devices & Controllers
(The “Things” in IoT)

Collaboration & Processes
(Involving People & Business Processes)

1

2

3

4

5

6

7

Sensors, Devices, Machines,
Intelligent Edge Nodes of all types

Center

Edge

Data at
Rest

Data in
Motion

	
Level 1: Physical Devices and Controllers
The IoT Reference Model starts with Level 1: physical devices and controllers that might control multiple devices.
These are the “things” in the IoT, and they include a wide range of endpoint devices that send and receive
information. Today, the list of devices is already extensive. It will become almost unlimited as more equipment is
added to the IoT over time.

Devices are diverse, and there are no rules about size, location, form factor, or origin. Some devices will be the
size of a silicon chip. Some will be as large as vehicles. The IoT must support the entire range. Dozens or
hundreds of equipment manufacturers will produce IoT devices. To simplify compatibility and support

Figure 2.1: IoT reference model published by IoTWF. Source: [20].

2.2.1 Layer 1: Physical Devices and Controllers

The first layer of the model [20] corresponds to the physical devices and controller layer.

This layer houses the “things” in the Internet of Things: the endpoint devices composed of

sensors and actuators that perceive and interact with the physical world. Through those

interactions, the devices generate data, which is then sent across the network for analysis

and storage.

Wearable, wireless, and non-intrusive devices are viewed as one of the key components

of IoT-based healthcare systems [13]. In recent years there has been remarkable progress

on the development of wearable devices, driven by recent technological breakthroughs in

the miniaturization of sensors and microfabrication processes [18, 17]. These devices allow

patients to be monitored while retaining their mobility, increasing the comfort of these

users. The drawback of this approach lies on the restrictions imposed on the devices. Due

to the nature of this technology, most of these units require a portable energy source, which

implies reduced memory, computation, and connectivity capabilities in order to minimize

energy consumption and maximize their lifetime. Shorter lifetimes translate into higher

maintenance costs, as these devices need to be replaced more often.

Another point to consider is the data requirements of the system, namely how much data

is generated and which type of data is transmitted by each device. Some applications can

6

include a single temperature sensor or heart rate sensor, while more complex systems can

include pulse oximetry, electrocardiogram (ECG), respiration rate sensors, etc. [15]. From

the literature [15, 21, 18, 22], the sensors used in these devices can be classified into three

distinct categories based on the signals that can be extracted from them, as shown in Table

2.1:

• Physiological Sensors: used for evaluating the patients’ health condition.

• Activity / Motion sensors: used for detecting fall events, determining the patients

location and the travelled distance, estimating the patients body posture, etc.

• Environmental Sensors: used for assessing environment conditions and possible

hazards, e.g. gas leaks in a patients home or an industrial workplace [21].

Table 2.1: Type of sensors commonly used in pervasive healthcare applications. Adapted

from [22].

Sensor Categories Examples

Vital Signs Monitoring
Blood Pressure, ECG, PPG, Body Temperature,

Respiratory Rate, Galvanic Skin Response,

Pulse Oximetry, Glucose Level Sensors

Activity Monitoring Accelerometer, Gyroscope, Magnetometer

Environmental Monitoring Air Temperature, Barometer, Humidity, Gas Sensors

2.2.2 Layer 2: Connectivity

The second layer of the model focuses on connectivity, on linking the different components

of the system, ensuring reliable and timely data transmissions. This includes all communi-

cations within the system, which can be divided into two categories: communications within

the local network (e.g. between edge nodes and the gateway devices), and communications

between the edge of the local network (e.g. gateway devices) and the central server.

7

Communication Protocols

Technology is designed with particular use cases in mind, built to fulfill a certain need which

other similar technologies fail to meet [20]. As such, each technology will be different, having

advantages and disadvantages depending on its usage. For instance, short range wireless

protocols are, by definition, limited by transmission range, but longer range protocols have

in general a higher energy consumption, which may become unviable for networks with

highly constrained devices. Some protocols communicate within certain frequency bands,

some of which may require special licenses. Using licensed frequency bands can provide a

better performance as it ensures greater reliability since the network operator grants you

exclusivity of frequency spectrum within certain areas but may be too costly.

From the literature, a set of key requirements that drive the decision of the communication

protocols can be identified [13, 17, 18]:

• Energy consumption: For networks composed of energy constrained devices, the

communication protocol should be lightweight and energy efficient in order to maximize

the devices’ lifetime.

• Latency: Certain applications deal with time critical events, for example the detection

of health emergencies [17]. In these cases, any delays in the communications can cause

great detriment to the patients well-being, making it crucial to minimize them.

• Reliability: Depending on the critical nature of the data that is being communicated,

the network stack may need to implement processes such as error-detection, retrans-

mission or handshakes in the communications to ensure more robust transmissions,

e.g. as implemented in TCP/IP based protocols. Generally, these features come at

the cost of greater latency. Therefore, when choosing the communication protocol, a

balance must be found between reliability and latency.

• Security: Security is one of the most important requirements of any system, but

this is especially true for healthcare applications. Due to the sensitive nature of the

information, it is crucial to secure it from malicious actors. Communication protocols

must implement security mechanisms, such as encryption or data integrity verifications,

that ensure the transmissions are not compromised in transit, thus denying third parties

the ability to snoop or tamper the transmissions. This issue is studied in depth in [23].

8

• Interoperability: To ensure the interoperability of intrinsically different modules of

the system it is imperative to choose protocols that are widely accepted and supported

in the application domain. This also contributes to the longevity and maintenance of

the system, as these will most likely remain supported for longer time periods.

• Range: The communication protocol must ensure that the devices can communicate

within the required transmission range.

• Scalability: These systems may contain an enormous amount of devices, which must

be uniquely identified. The communication protocol must ensure that every device

in the network is addressable, and that performance is not severely impacted by the

addition of new devices.

• Throughput: The communication protocol should ensure that there is enough band-

width to handle all communications within the designated transmission range. Even

within similar technologies, this can vary wildly with transmission range [24].

Regarding communications within the local network, these generally have short trans-

mission ranges [13]. Wearable devices can be often arranged in networks, aptly designated

Wireless Body Area Network (WBAN). The most widely adopted protocol is Bluetooth Low

Energy (BLE), a low-energy version of the classic Bluetooth protocol [14, 21, 15]. ZigBee

and Radio-frequency Identification (RFID) are also used in many systems in this domain,

particularly in asset tracking oriented applications [25, 17, 18]. Despite the absence of a uni-

versal specification for RFID, the most widely used standard is the EPCglobal Gen2 RFID

[26]. For the sake of simplicity, EPC/RFID is used to designate it.

Out of the abovementioned technologies, BLE offers greater throughput, better security,

and nearly the lowest energy consumption [27]. Table 2.2 shows a comparison between the

different protocols.

9

Table 2.2: Overview of the most common communication protocols used within short range.

Adapted from [13].

BLE EPC/RFID ZigBee

Band of

operation
2.4 GHz LF, HF, UHF, EHF 2.4 GHz

Communication Bidirectional
Unidirectional

(Bidirectional for

Active tags)

Bidirectional

Topology
Point-to-Point,

Piconet, Broadcast,

Mesh

Point-to-Point Mesh

Range <100 m
<10 m, (100 m for

Active tags)
20 m

Data rate

(Typical)
1Mbps 40kbps 250kbps

IP Stack 7 7 3

Security

Features

AES-128, Secure

pairing prior to

key exchange

7

AES-128 (Optional),

Network key shared

across network,

Optional link key to

secure application layer

communications

Regarding communications between the gateway devices and the central server, most

researchers try to make use of existing infrastructure in order to facilitate the deployment

of new systems. This means, that the communications between the gateway devices and the

central server are often done through generic IP-based protocols such as Wi-Fi and Ethernet

[18, 25, 15, 17].

Application Protocols

So far the underlying networking technologies that link the devices in system have been

discussed. But according to the OSI Model, many of these technologies do not define

the application layer: how the devices communicate with each other, how the data is for-

matted, if there is a hierarchy within the network, etc. When considering networks com-

10

posed of constrained devices, generic web-based protocols such as Hypertext Transfer Pro-

tocol (HTTP) may not be adequate for IoT applications, which prompts the development

of novel lightweight messaging protocols suited for these systems. The most used applica-

tion layer protocols in IoT systems are Message Queuing Telemetry Transport (MQTT) and

Constrained Application Protocol (CoAP). Table 2.3 overviews these widely used protocols.

Table 2.3: Comparison between CoAP and MQTT protocols. Adapted from [24].

MQTT CoAP

Transport protocol TCP/IP UDP/IP

Messaging pattern
Publish/Subscribe

(asynchronous)

Request-Response

(synchronous)

Communication model Many-to-many One-to-one

Security SSL/TLS (Optional) DTLS

Strengths

TCP and Quality of

Service (QoS), robust

communications, easier

to implement

Better for lossy networks,

lower latency

Weaknesses
Higher overhead and energy

consumption than CoAP

Not as reliable and

less supported than MQTT

In [28], the authors compare these two protocols in greater length, along with the more

commonly used web-based protocol Hypertext Transfer Protocol (HTTP). They analyze the

latency in the communications (from the edge devices to remote servers) and the RAM usage

in the devices for each protocol and for different data sources (respiration rate, oxygen satu-

ration and heart rate signals) and found that CoAP presented the best overall performance.

Nonetheless, all protocols had very low latencies (less than 1.5s) and low memory usage.

The authors indicate that MQTT might be more suitable when considering a certain mes-

saging pattern — the “Publish/Subscribe” model. In this model, the devices that send mes-

sages, called “publishers”, communicate them to an intermediary message broker, through

a “message topic” (also called logical channels). The devices that wish to receive messages,

called “subscribers”, can subscribe to these topics by requesting it to the message broker.

11

Whenever a publisher sends a message, the broker broadcasts it to all devices that have

subscribed to the selected topic. Figure 2.2 shows a diagram of MQTT of two clients (A and

B) connecting to the MQTT broker, and where client A transmits two messages to the topic

“client/b” while client B subscribes to that topic. In MQTT, a client subscribed to a topic

receives a message whenever an authorized client (including itself) publishes a message on

that topic.

MQTT Broker

CONNECT

CONACK

CONACK

CONNECT

PUBLISH('client/b', '1')

PUBLISH('client/b', '2')

PUBLISH('client/b', '2')

SUBSCRIBE('client/b')

Client BClient A

Figure 2.2: Diagram of a MQTT message sequence.

CoAP uses a different messaging pattern, called “Request-Response”. In this paradigm, a

device sends a request to receive certain data and the second responds to this request. In

CoAP, the requests are delivered asynchronously, and so the response messages must contain

a “token” value so that the client can identify which request resulted in this response. Figure

2.3 shows a diagram of the communication, where a client makes a GET request to the CoAP

server to retrieve information.

Client Server

CON 0xbc90
GET /data
(Token 0x71)

ACK 0xbc90
2.05 Content "22.1 ºC"

(Token 0x71)

Figure 2.3: Diagram of a CoAP message sequence.

12

2.2.3 Layer 3: Edge (Fog) Computing

IoT systems may have hundreds or even thousands of sensors generating data multiple times

per second, 24 hours per day, which may require an unsustainable amount of network and

computing resources. Moreover, certain applications are time critical, where delays in com-

munication can be very detrimental. To minimize these effects, it is crucial to initiate data

processing as close to the edge of the network as possible. This paradigm is usually re-

ferred to as edge computing, when the data processing occurs at the endpoint devices, or

fog computing, when it happens at the edge of the local network, e.g. in gateway devices.

The third layer of the model defines how the system prepares the data for storage and

higher level processing for the next layers. However, the endpoint or gateway devices often

have limited computing capabilities, so the data processing is generally focused on prepro-

cessing the data in real-time and handling more time critical events. More demanding and

thorough data analysis is usually left to the central server.

The different processes applied at this stage can be summarized into four distinct cate-

gories:

• Filtering: Assessing if the data should be processed at a higher level.

• Formatting: Reformatting data to ensure consistent formats for higher-level process-

ing.

• Cleaning: Reducing data to minimize the impact of data on the network and higher

level processing systems.

• Evaluation: Determining whether data represents a threshold or alert. This is espe-

cially relevant for applications that deal with time critical events as seen in the previous

section.

2.2.4 Layer 4: Data Accumulation

The data that is generated by the edge devices is propagated through the system, and

eventually reaches the central server. Up to this point, the model is event driven. However,

most applications cannot make use of the data at the rate it is generated [24]. The Data

Accumulation layer details how the system captures the data and stores it, so applications

can make use of it when needed, thus transiting from event to query-based processing.

13

As the devices continuously generate data, the system will require more and more re-

sources in order to process and store all of this information, raising some concerns regarding

how the data can be managed. In [14], the authors propose the usage of cloud platforms as a

solution to these problems. This is made possible due to the elasticity in allocating, swiftly

and inexpensively, computing and storage resources on-demand, adjusting itself to the needs

of each application. In general, three distinct types of cloud services can be identified:

• Infrastructure as Service (IaaS): Provides control over the remote machine (com-

posed of virtual or dedicated hardware), operative system and middleware. This ap-

proach gives system designers the highest level of flexibility over the infrastructure,

but requires more maintenance.

• Platform as a Service (PaaS): Provides a simple framework for developing appli-

cations, where the service provider manages the underlying infrastructure issues such

as software updates and hardware maintenance.

• Software as a Service (SaaS): Provides the finished applications to be used by the

end users, in this case health workers, that enable them to work. A simple example is

a web-based email service, such as Gmail or Microsoft Outlook.

Figure 2.4 shows the differences between these cloud offerings and on-premise deployments.

On-site IaaS PaaS SaaS

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking Networking Networking

Service provider manages

You manage

Figure 2.4: Differences between the cloud offerings and on-premise solutions. Source: [29]

Nonetheless, security and privacy remain as key concerns for the implementation of cloud-

based solutions. The information must remain accessible to authorized parties such as health-

care providers, but the patients health data has to be kept private. To solve this, there are

14

two commonly adopted features in the literature: access control policies and data encryp-

tion [13]. Access control policies define who can access the data, by authenticating them

(validating the identity of the user) and by authorizing them (ensuring that the user has

permissions to perform a given operation). Data encryption ensures that, even if the data

is leaked, it is still unreadable to third parties, and therefore sensitive information remains

secure and private.

Regarding storage solutions, most research works use traditional relational databases

(RDBMS) as the means of storing data [25, 15, 17, 18]. These are often referred to simply

SQL or Structured Query Language (SQL) databases, which is the language used to interact

with the database.

However, since the data in IoT can very heterogenous and unstructured, the authors

of [30] propose using NoSQL databases. NoSQL or “not only SQL” describes a class of

database systems that can support – and are more optimized for – storing semi-structured

and unstructured data. NoSQL data stores typically outperform SQL databases as the data

increases in volume [31]. Table 2.4 illustrates the differences between these two technologies.

Table 2.4: Comparison between SQL and NoSQL database technologies.

SQL NoSQL

Type of database Relational Non-relational

Database model Table-based database
Document-based databases,

Key-value stores, graph stores,

wide column stores

Data type Appropriate for structured data
Appropriate for unstructured or

semi-structured data

Schema Strict schema Dynamic schema

Query
Uses Standard Query

Language (SQL), appropriate for

complex query operations

No standard query language

Scalability Vertical Horizontal

Performance
Generally lower than

NoSQL systems
Optimized for large datasets

15

2.2.5 Layer 5: Data Abstraction

The previous layer defines how the system captures the information. In some cases, the

collection of data may require the development of multiple concurrent storage solutions,

each using different technologies, resulting in a very complex environment. The purpose

of this layer is to define services that simplify how the applications access the data, to

reconcile the different data stores and ensure the information is complete and consistent

[20]. Applications can then interact with these databases through interfaces exposed by

these services, designated Application Programming Interfaces (APIs).

An API is a computing interface that defines a set of rules that “explain how computers

and applications communicate with one another”, acting as an intermediary between these

different components [32]. It defines which operations can be performed, how to request

them, which are the accepted data types, etc. In this case, it decouples applications from the

storage solutions, by encapsulating their functionality behind the interface. This ensures the

modularity of the system as the applications become independent of whichever technologies

are used in the data stores.

Understanding what and how information is shared within the healthcare domain is

fundamental. As patients continuously circulate through the healthcare ecosystem, their

health information must be available, discoverable and understandable to different entities

(hospitals, laboratories, pharmacies, etc.). This prompts the digitization of medical files

and the development of standards for exchanging these records instantly and securely to

authorized parties [33], which are called Eletronic Health Records (EHRs). EHRs are the

digital equivalent of a patient’s paper-chart, containing the patient’s full medical history:

previous diagnoses, treatment plans, test results, known allergies, among other details.

One of the most prominent standards for exchanging EHRs is Fast Healthcare Interop-

erability Resources (FHIR). FHIR is a standard developed by Health Level Seven Interna-

tional (HL7), which is a non-profit organization involved in the development of international

healthcare informatics for over 20 years. FHIR builds upon previous data format standards

like HL7 v2 and HL7 v3, and is becoming widely adopted within the healthcare industry

[34]. This standard defines a lightweight RESTful framework using common data formats,

like JSON and XML, so it can be readily integrated into lightweight web services, thus

underlining its suitability for web-based platforms [35].

16

2.2.6 Layer 6: Application

The sixth layer corresponds to the application layer, where the system ingests the captured

data, analyzes it and delivers the value to the end users. Users can then interact with the

system through an User Interface (UI), which provide different functionalities depending on

the application. Some may show simple reports regarding the collected data [14, 15], and

others may allow users to monitor and have greater control over the different components of

the system.

As seen in an earlier section, Table 2.1 shows what kind of information is generally

acquired in IoT healthcare applications. Using artificial intelligence, it is also possible to

correlate all of this information to guide the clinical decisions from healthcare providers

[35, 36, 37].

2.2.7 Layer 7: Collaboration and Processes

The information that is created by the IoT systems yields little value unless it prompts action,

which requires integrating people and business processes (seventh layer). The purpose of

these systems is to empower people to work better and more efficiently by providing valuable

insight at the right time. To do this, people must be able to communicate and collaborate,

which often requires multiple steps and transcends multiple applications [20]. However, this

component of the system is beyond the scope of this work and thus it is not discussed further.

2.3 Survey on IoT Applications for Healthcare

The architecture of IoT systems has been thoroughly discussed, but so far no specific im-

plementations have been referenced. This section presents an overview of IoT connected

healthcare applications described in the literature, highlighting each of their strengths and

weaknesses.

In [25], one of the first IoT applications for healthcare is described. The authors propose

a real-time locating system (RTLS) using RFID tags called RFIDLocator. These tags are

placed in hospital equipment, staff, patients and medical files and by using RFID readers

placed in strategic locations around the hospital (e.g. entrance of rooms, handheld readers),

it is possible to track the location of each object. When a RFID reader detects a RFID

17

tag it communicates this information, using Wi-Fi, to a central server which stores it in

a MySQL database. Healthcare workers can then view this information through a web

application, which contains a location history of the tagged object. The authors show how

RTLS systems can mitigate the risks of patient misidentification, loss or theft of assets

and even drug counterfeiting. However, in this article, security and privacy issues are not

discussed. Although not stated explicitly, communications between the RFID tags and the

RFID readers are assumed to be unencrypted, which means “unethical individuals could

snoop on people and surreptitiously collect data (...) without their knowledge”, even after

leaving the hospital if the tags are not removed. This raises serious privacy concerns, as the

tags could contain private information that can be detrimental to the patients if revealed.

In [18], the authors propose a RTLS system that also monitors the patient’s vital signs,

using a small wristband which holds a low power device equipped with temperature, photo-

plethysmography (PPG), used to obtain the heart rate, and accelerometer sensors, used for

detecting fall events. The system can also detect with 70% accuracy if the patient has fallen,

sending an immediate message to the gateway, which will later alert the clinical staff to the

emergency. The authors ran a pilot test within hospital premises which was well-received by

the clinical staff who praised the system for its intuitiveness and non-intrusiveness, stating

that it could be easily integrated into their current HIS. However, the authors pointed out

some issues related to the usage of RFID tags with sensors for patient monitoring. The

RFID reader powers the RFID tags, and when using tags with sensors, the readers need

to provide considerably more energy to the tags. The readers must be adjusted to provide

enough power, but local regulations limit the transmission power. Regarding e-health stan-

dards, the authors did not discuss any protocols for exchanging data such as FHIR, which

can undermine the integration of the system with existing HISs.

Wu et al. [15] have developed a system which uses wearable sensor patches to monitor

the patients’ status. The wearable sensors transmit the different physiological signals (ECG,

PPG and body temperature) to gateways using BLE, which can either by fixed (using a

Raspberry Pi module) or mobile (using a smartphone app). The gateway exchanges data

with the cloud through bridged MQTT brokers, after which it is stored in a MySQL database.

The data is stored both in the cloud server and in the fixed gateway. The local users can

interact with the system through a web-based user interface (UI) using the smartphone or

other web browsers in the local area network. However, the usage of local data storage

can cause data integrity issues as the system must ensure databases in both the server and

18

gateways are synchronized at all times. This can undermine the scalability of the system, as

the redundant data synchronization can become a performance bottleneck in the long term.

In [14], the authors proposed a IoT infrastructure that acquires real-time patient data

from wearable sensors, using a cloud platform to handle all data processing and storage

requirements. The authors have developed a wearable device which takes the form of a

sock, designated “CloudSensorSock”. The CloudSensorSock acquires mobile data, through

accelerometer and gyroscope sensors, vital data, through temperature and heartbeat sensors,

and contextual information about the patient’s environment using air quality (CO2) sensors.

It communicates with a mobile app through BLE, which acts as a gateway to the cloud

server. The authors propose moving the data processing entirely to the cloud server as

cloud platforms can scale to the needs of the application with little management and cost.

However, this approach may not be viable for time critical applications. As discussed earlier,

the latency in the communications between devices and remote servers may have a negative

impact on the application, especially since the authors propose using this system for detecting

fall events.

Recently, and motivated by the COVID-19 pandemic, Raposo et al. [37] developed a

system called “e-CoVig” a low-cost solution for monitoring COVID-19 patients during the

quarantine.The data acquisition is performed using a mobile app. To collect physiological

data, the authors developed a specialized wearable device that communicates with the mo-

bile app through BLE, recording pulse oximetry (SpO2), heart rate, and temperature data.

Alternatively, patients can use their own measuring devices, e.g. a thermometer, and manu-

ally insert the measurements or use Optical Character Recognition (OCR) to automate the

in-app insertion of the values. The app can also be used to record audio snippets in order to

detect cough and monitor respiratory activity. Unfortunately, the lack of e-health standards

hinders its integration with external healthcare systems.

Table 2.5 summarizes the key properties of the previously discussed solutions.

19

Table 2.5: Comparison between different pervasive healthcare applications.

References Measured Signals Networking Protocols Data Storage e-Health Standards
Application

Features
Security Features

Fuhrer et al. [25] N/A
EPC/RFID,

Wi-Fi
MySQL None RTLS

Unspecified Storage

Encryption

Adame et al. [18]
Temperature,

Heart Rate,

Accelerometer

EPC/RFID,

Wi-Fi
MySQL None

RTLS,

Fall Detection,

Vital signs

monitoring

AES-128, WPA-Personal

Wu et al. [15]
Temperature,

Heart Rate,

Accelerometer

BLE, Wi-Fi,

MQTT
MySQL None

RTLS,

Fall Detection,

Vital signs

monitoring

AES-128

Doukas et al. [14]

Temperature,

Heart Rate,

Accelerometer,

CO2 Sensor

BLE, Wi-Fi, GPRS/3G

HTTP
MySQL None

Fall Detection,

Vital signs

monitoring

AES

Raposo et al. [37]

Temperature,

Heart Rate,

Pulse Oximetry,

Respiration Rate

BLE, Wi-Fi Unknown None

Fall Detection,

Vital signs

monitoring,

Clinical decision

support

Unknown

20

2.3.1 Weaknesses of literature

In the literature, many solutions secure communications between the devices using standard

encryption algorithms like Advanced Encryption Standard (AES) [18, 15, 14]. However,

very few discuss authentication and authorization processes [14, 23]. To ensure that no data

is leaked to malicious authors, the networking protocols used must ensure these security

properties.

Several web services currently use Transport Layer Security (TLS) [38]. This protocol

ensures integrity, confidentiality and authentication as it combines public key cryptography

to validate the identity of the communicating parties, symmetric-key algorithms to encrypt

the transmissions and message integrity checks to ensure the transmissions are not tampered

during transport. These properties make this protocol invaluable for secure communications

over the web, and thus should be an integral component of IoT networks. Moreover, access

control needs to be considered. Systems are composed by many devices, which may have

different levels of access level for each device. For example, limiting access to certain topics

in MQTT, so that devices can only subscribe and publish messages in specific topics.

Despite recent efforts, interoperability is still an issue for IoT systems. Due to the lack

of clear and concise industry standards and regulations, many manufacturers develop their

own proprietary data formats and communication protocols, which hampers the integration

of new resources since solutions are designed within closed ecosystems [28].

Fortunately, there are several international initiatives to promote the use of IoT in health

in a standardized way, such as HIMSS (Healthcare Information and Management Systems

Society) and the Personal Connected Health Alliance (PCHAlliance). PCHAlliance, for ex-

ample, advocates the adoption of the Continua Design Guidelines (CDG), which facilitates

the integration of personal health devices into health systems. These guidelines have been

recognized by ITU (International Telecommunication Union) and the European Commission

and are adopted by countries such as Denmark, Norway and the USA, among others [39].

These guidelines promote a series of e-health standards like FHIR which facilitate the ex-

change of information between systems, in order to ensure that the implementations become

truly interoperable.

21

2.4 Statement of Contributions

In the scope of the WoW R&D project, wearable devices, designated “Biostickers”, have

been developed to collect physiological patient signals using the BLE networking stack. As

an alternative, the project also studied the possibility of using of RFID for the networking

stack, in an effort of creating battery-less wearable devices. However, this has shown to be

unfeasible due to strict energy consumption and energy transfer requirements that could not

be met during development.

Having this in mind, and in the context of this dissertation work, a novel fully modular

IoT infrastructure is proposed, making use the FHIR standard in order to fully integrate the

data into an existing and widely used HIS – GlobalCare2 by Glintt - Healthcare Solutions,

S.A.

From a hardware perspective, the IoT system is composed of 3 different components, as

seen in Figure 2.5:

• the Biosticker (and the Oximeter), that acquire the patient’s physiological signals;

• the Smart box, which acts as a central node of the WBAN and aggregates the data,

communicating it to the gateway via Wi-Fi;

• and finally, the Smart Gateway, which serves as a fog server in order to mitigate latency

and other computing issues and acts as the gateway to the HIS, by communicating

with the “Interoperability” FHIR layer on the HIS.

As the goal of the project is the deployment of the system in an hospital, Centro Hospitalar

e Universitário de Coimbra (CHUC), each Smart box is coupled with a hospital bed, which

is referred as a SmartBed.

2GlobalCare by Glintt: https://globalcare.glintt.com/

22

https://globalcare.glintt.com/

Manage
Patient/Encounter/Condition

Manage data collection
subscription (per box/sensor)

Transform sensor raw data into
FHIR

List available devices

Gateway

Data anonymization

Collect real time data from
devices

Data pre-processing

Patient

In
te

ro
pe

ra
bi

lit
y

Patient/Encounter/Condition -
Device association

Health Professional

Subscribe sensor data

Display observation data

User Interface

FHIR

Data

Ask real time data

Micro Services

MQTT

Smart Box

Hospital Information System

Edge/Cloud computing data
processsing and storage

Low-level data
acquisition

Low-level Graphical
User Interface (GUI)

Internal raw sensor
database

Respiration filtering

IMU patient state
classification

BLE
GATT (1)

Biosticker

Temperature

Heart Rate

Electrocardiogram
(ECG)

Inertial measurement
unit (IMU)

Respiration

Pulse Oximetry

Oximeter

BLE
GATT (2)

Figure 2.5: System architecture of the WoW project. In this work, the details of imple-

mentation of the Smart Gateway components are discussed, as well as contributions to the

Smart box development.

For the work developed throughout the dissertation, the following contributions are pro-

posed:

• Development and deployment of the Smart boxes embedded in hospital beds for data

acquisition from Biostickers attached to patients’ skin, namely:

– Hardware evaluation of 2 different IoT kits (Raspberry Pi and Udoo Bolt).

– Evaluation of different BLE adapters for data acquisition.

• Design and implementation of data integration pipelines using MQTT and manage-

ment of the multiple Smart boxes in the Smart Gateway;

• Usage of a FHIR API layer to integrate the proposed system in the GlobalCare HIS.

• Evaluation of the performance of the proposed system on an hospital trial and through

controlled lab tests within the WoW project.

2.5 Summary

In this chapter, the importance of IoT systems is discussed, how these systems are composed

and how these can bring value to healthcare providers. After analyzing different relevant

23

systems proposed previously in the literature, a set of criteria was defined to guide the

development of our own implementation.

The next chapter begins with the evaluation of the different IoT kits for the Smart

Bed hardware, and afterwards, an evaluation of different BLE adapters for patient data

acquisition to implement secure communications between the Biostickers and the Smart

boxes.

24

3 Smart box Development

In the proposed architecture, the Smart box plays the role of acquiring the data that is

transmitted wirelessly by the Biostickers, which can be seen on Figure 3.1. Each Smart

box is associated to a single patient, it captures the data of each Biosticker attached to

that patient, and stores it in a local database for redundancy. It should also be capable of

analyzing and processing the data in real time, before propagating it to the higher layers

in the system architecture, in order to reduce computation and networking overhead on the

Smart Gateway. The WoW project also foresees the usage of a classification algorithm in

the Smart box to determine the body pose of the patient, as well as filtering the respiration

data to account for signal fluctuations caused by sudden movements from the patient.

Figure 3.1: Illustration of the Biostickers. On the left, a conceptual illustration of the

different components that form the Biosticker is shown. On the right, photographies of a

test volunteer using the Biosticker are exhibited.

Additionally, for debugging purposes, researchers at the ISR developed a simple developer

UI to be deployed on the Smart box, which can be seen on Figure 3.2.

25

Figure 3.2: Illustration of the developer UI for debugging the Smart box acquisition, designed

by the WoW research team at ISR.

Regarding data acquisition, the Smart box collects 5 distinct biosignals, which can be seen

on the developer low level UI on Figure 3.2:

• Electrocardiogram (ECG) – Byte array (20 byte length) with the electrical signal

measured, with a frequency of 20 Hz.

• Respiration Rate – An unsigned integer (4 bytes) representation of the rate of respira-

tion, with a frequency of 10 Hz.

• Heart Rate – An unsigned byte representation of the heart rate in beats per minute,

every 5s.

• Body Temperature – An IEEE 110733 floating-point number representation of the body

temperature, every 60s.

• Oxygen Saturation – A standard floating-point number (4 bytes) representation of the

oxygen saturation, every 1s.

3https://standards.ieee.org/standard/11073-10207-2017.html

26

https://standards.ieee.org/standard/11073-10207-2017.html

3.1 Deciding on a Hardware Platform

As discussed, there are multiple requirements the Smart box hardware must fulfill, from

communication to the Biostickers to integration with the Smart Gateway:

• The device must be small enough to be mounted on a hospital bed.

• The device must be powered via a standard electrical outlet, so power consumption

constraints are not an issue.

• It must support BLE 5.0, and capable of handling the communication bandwidth

required by the Biostickers.

• The hardware must support Ubuntu 20.04 LTS as its operative system.

• It must communicate to the Smart Gateway using the protocol MQTT, connected via

Wi-Fi.

With these requirements in mind, and in context of this dissertation, two different Single

Board Computers (SBC) have been considered for the development of the Smart box : a

Raspberry Pi 4 Model B and an UDOO BOLT v3. In the following sections the characteristics

of each platform are discussed and compared.

Raspberry Pi 4 Model B

Raspberry Pi denotes a series of SBCs which are developed by the Raspberry Pi Foundation,

a UK-based charity that aims to educate the general public about the power of computing

and digital making, in association with Broadcom. It is one of the most popular hardware

platforms used by developers due to its accessible price and community support [40]. At

the time of the writing, the Raspberry Pi 4 Model B (or Raspberry Pi 4B)4, which can be

seen in Figure 3.3, is the latest revision of the Raspberry Pi series, powered by Broadcom

BCM2711 System on a Chip (SoC).
4https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

27

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

Figure 3.3: Raspberry Pi 4B.

UDOO BOLT V3

As stated by the manufacturer5, the “UDOO BOLT is a quantum leap compared to current

maker boards”. It represents a series of high performance SBC, equipped with the latest

generation of AMD Ryzen Embedded SoC. Additionally, it contains an Arduino Compati-

ble microcontroller (connected via UART), making the UDOO BOLT extremely versatile.

UDOO BOLT is incredibly well-supported by UDOO but unfortunately, it still does not

have nearly the same community support of Raspberry Pi.

The UDOO BOLT V3, which can be seen in Figure 3.4, is the entry-level product of the

series, but it is still capable of allegedly outperforming full-fledged computers such as the

Apple MacBook Pro 13", which just goes to show how powerful these SBCs can be.
5https://www.udoo.org/discover-the-udoo-bolt/

28

https://www.udoo.org/discover-the-udoo-bolt/

DC-IN 19V

Gigabit Ethernet 2x USB 3.1 Type-C 2x HDMI 2.0

Arduino Compatible
Pinout

Power Button IR Reciever 2x USB 3.1 Type-A

Audio Headset Jack

2x DDR4 SO-DIMM
(Up to 32 Gb)

Grove Connectors

Figure 3.4: UDOO BOLT V3.

29

3.1.1 Comparing the Hardware Platforms

In order to decide on which platform to pick for the development of the project, it is crucial

to compare the specification of both boards, which can be seen in the Table 3.1.

From Table 3.1, it can be concluded that the Raspberry Pi is a much more affordable

alternative. At over 1/7 of the price, it already has a working Wi-Fi+BT networking module

(which is not included in the UDOO BOLT V3), nearly identical Input/Output (I/O) port

capability and a smaller size. UDOO BOLT V3 on the other hand, has a much better SoC,

which is expected to deliver a much better overall computing performance.

Table 3.1: Specifications of the Raspberry Pi 4B and UDOO BOLT V3.

Raspberry Pi 4B UDOO BOLT V3

SoC
Broadcom BCM2711

(ARMv8 64-bit)

4-core @ 1.5G Hz

AMD Ryzen™ Embedded V1202B

(AMD64 64-bit) 2-core @ 2.3G Hz

(up to 3.2G Hz turbo)

RAM 2, 4 or 8 GB LPDDR4 Up to 32 GB DDR4 (Not included)

Storage
No internal storage,

SDXC Card Support

32 GB internal eMMC +

1 × SATA III and

2 × M.2 connectors

Networking
2.4/5.0 GHz Wi-Fi, Gigabit

Ethernet, Bluetooth 5.0, BLE

Gigabit Ethernet + M.2 Key E slot

for optional Wi-Fi+BT module

I/O Ports
2 × USB 3.0, 2 × USB 2.0,

2 × (Mini) HDMI

2 × USB 3.0 Type-A,

2 × USB Type-C (w/ Display Port

+ Power Delivery), 2 × HDMI

Other

Features

Power over Ethernet

(PoE)–enabled

Includes ATmega32U4 microcontroller

(Arduino Leonardo compatible),

RTC Battery

Dimensions 8.5 x 5.6 x 1.7 cm 12 x 12 x 7 cm

Max. Power

Consumption
9 W 60 W

Price
75.93 € (8 GB Model,

including a 32 GB SDXC Card

and case)

534.48 € (including external power

supply and a 16 GB RAM module)

30

In order to understand how these differences in the hardware specification between the

SBCs translate to real-world performance, a test suite has been developed and conducted

to quantify the performance of each SBC. The tools developed for each test can be found

here6. In the next sections, the details of each test are explained and the performance of

each SBC is discussed.

Test 1: Python Benchmark

Given the data processing requirements for the Smart box, and as Python is used as the main

scripting language for most of the Smart box development, a simple test has been developed

to estimate computing performance, or more specifically (single-threaded) performance of

arithmetic tasks, on each SBC. In this test, each SBC calculates the n-th number in the

Fibonacci sequence [41], and the time taken to complete is measured. This process is repeated

10 times for different numbers, from 10000 to 500000, to determine average run time.

0 1 2 3 4 5
Number of Fibonacci Numbers calculated ×105

0

2

4

6

8

Ru
n

tim
e

(s
)

UDOO BOLT V3 (Regression)
Raspberry Pi 4B (Regression)
UDOO BOLT V3
Raspberry Pi 4B

Figure 3.5: Custom Python benchmark for the Raspberry Pi 4B and UDOO BOLT V3.

From Figure 3.5, it can be observed that the time taken for computing each number

increases quadratically for each platform (R2 > 0.99 for both regressions), as expected, with
6https://github.com/WoW-Institute-of-Systems-and-Robotics/smartbox_benchmark_tests

31

https://github.com/WoW-Institute-of-Systems-and-Robotics/smartbox_benchmark_tests

UDOO BOLT V3 outperforming Raspberry Pi 4B on average by a factor of 2.5 ± 0.2.

Test 2: Phoronix Test Suite

The Phoronix Test Suite7 is an open-source benchmarking platform used for comparing

the performance of different systems. The framework provides compilations of tests for a

variety of tools and is also fully customizable and expandable, allowing users to develop and

automate their own tests in a clean, reproducible and easy-to-use fashion. The test profiles

work by measuring some property of the benchmark, (e.g. the run time for calculating the

first 100 Fibonacci numbers) and use it to provide an estimate of the performance of the

SBC, which can be easily used for comparison between different systems.

For the purposes of evaluating the computing performance of each SBC, the following

standard test profiles provided by Phoronix8 were chosen, which are a compilation of the

most popular Python and Central Processing Unit (CPU) benchmarks used9:

• BYTE Unix Benchmark (“BYTE”), single-threaded CPU benchmark – Runs BYTE

UNIX benchmark suite (more accurately, the Dhrystone 2 synthetic benchmark) to

measure the amount of instructions per second (IPS).

• 7-Zip Compression (“7-Zip”), multithreaded CPU benchmark – Runs the benchmark

feature integrated in 7-Zip to measure the amount of millions instructions per second

(MIPS). The benchmark consists of a LZMA data compression and decompression test

run, using all available threads in the system (meaning it will scale highly with the

amount of threads in the system).

• PyBench Benchmark (“PyBench”), single-threaded Python & CPU benchmark – Exe-

cutes different function such as built-in function calls and nested for-loops and measures

its runtime.

• PyPerformance chaos Benchmark (“chaos”), single-threaded Python & CPU bench-

mark – Create chaos game-like fractals [42] and measures its run-time.
7https://www.phoronix-test-suite.com/
8https://openbenchmarking.org/
9The benchmark results obtained were published in the OpenBenchmarking.org website, and can be found

in the following URL: https://openbenchmarking.org/result/2110255-JNCF-211025851.

32

https://www.phoronix-test-suite.com/
https://openbenchmarking.org/
https://openbenchmarking.org/result/2110255-JNCF-211025851

• PyPerformance float Benchmark (“float”), single-threaded Python & CPU benchmark

– Create 100,000 random floating-point numbers and calculate the co-sine, sine and

square root of each one and measures its run-time.

• PyPerformance nbody Benchmark (“nbody”), single-threaded Python & CPU bench-

mark – Runs an n-body problem simulation [43] and measures its run-time.

• PyPerformance json_loads Benchmark (“json”), single-threaded Python & CPU bench-

mark – Evaluates JavaScript Object Notation (JSON)10 parsing and serialization, a

widely used open standard data format, by dumping and loading thousands of objects

and measures its runtime.

• PyPerformance crypto_pyaes Benchmark (“crypto”), single-threaded Python & CPU

benchmark – Runs the AES block-cipher Python implementation and measures its

run-time.

• PyPerformance regex_compile Benchmark (“regex”), single-threaded Python & CPU

benchmark – Compiles different regular expressions or regexes in Python and measures

its run-time.

• PyPerformance python_startup Benchmark (“startup”), single-threaded Python & gen-

eral system performance benchmark – Measures Python’s startup time.

• PyPerformance django_template Benchmark (“django”), single-threaded Python bench-

mark – Builds a 150x150-cell HTML table and measures its run-time.

10The JavaScript Object Notation (JSON) Data Interchange Format: https://www.rfc-editor.org/

rfc/rfc8259.html

33

https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/rfc/rfc8259.html

BYTE

7-Zip

PyBench

chaos

float

nbody json

crypto

regex

startup

django

0.4

0.6

0.8

UDOO BOLT V3
Raspberry Pi 4B

Figure 3.6: Phoronix benchmarks for the UDOO BOLT V3 and Raspberry Pi 4B. The

performance values for each test are normalized to UDOO BOLT V3 performance.

From Figure 3.6, it can be observed that UDOO BOLT V3 performs much better than

Raspberry Pi 4B in every benchmark, as expected. However, some disparity in the relative

performance throughout the benchmarks is also noticed.

For example, in the 7-Zip benchmark, this is likely due to the fact that is a multithreaded

test, and as Raspberry Pi 4B has more threads than UDOO BOLT V3, it manages to close

the performance gap (albeit only slightly). For the startup and django benchmark score

differences, these are mostly affected by the load time of the Python interpreter, which is

significantly affected by the main storage device. A high-speed SD card was used with the

Raspberry Pi and the internal eMMC storage was used with the UDOO BOLT V3, which

is a significantly faster storage medium than an SD card and thus is most likely the cause

for the benchmark score difference. Benchmarks which use many arithmetic operations,

like the float benchmark or BYTE, can also show significantly different results as well since

each CPU architecture has different optimizations for handling floating point operations or

integers operations.

On average, UDOO BOLT V3 outperforms Raspberry Pi 4B in all benchmarks by a factor

of 2.21 ± 0.4.

34

Test 3: MQTT Benchmark

As the Smart box is intended to communicate with the Smart Gateway through MQTT

messages, an evaluation of how each system handles the load associated with a MQTT client

is performed. For this test, each SBC uses a simple MQTT client, that subscribes to a single

topic and publishes a message that same topic for different transmission rates, with a payload

with a length of 1000 bytes, through a MQTT broker in the local network. Additionally,

the tests measure the communication with and without TLS to evaluate the impact of the

secure protocol.

0 20 40 60 80 100
Messages sent/received (Hz)

0

1

2

3

4

5

Av
er

ag
e

CP
U

Us
ag

e
(%

)

MQTT Client CPU Usage
UDOO BOLT V3 (no TLS)
UDOO BOLT V3 (TLS)
Raspberry Pi 4B (no TLS)
Raspberry Pi 4B (TLS)

0 20 40 60 80 100
Messages sent/received (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

RA
M

 U
sa

ge
 (%

)

MQTT Client RAM Usage
UDOO BOLT V3 (no TLS)
UDOO BOLT V3 (TLS)
Raspberry Pi 4B (no TLS)
Raspberry Pi 4B (TLS)

Figure 3.7: MQTT benchmark for Raspberry Pi 4B and UDOO BOLT V3. In the RAM

usage graph, the tests with TLS and no TLS show identical results, causing the data points

to overlap.

The MQTT client is a very lightweight process, and as seen in Figure 3.7, it is capable of

running on both platforms with trivial performance impact. As the transmission frequency

increases, the CPU load increases linearly, Additionally, it can be observed that the Rasp-

berry Pi uses more CPU than the UDOO BOLT V3, by a factor of 1.88±0.21 without using

TLS and 2.01± 0.31 using TLS. The usage of RAM remains constant throughout the tests,

0.1% on UDOO BOLT V3 and 0.2% on Raspberry Pi 4B – which are very negligible values,

and thus do not represent any significant impact in performance. Additionally, the usage

35

of TLS directly impacts the performance of the devices, but not to any significant degree –

0.16% ± 0.02 more CPU usage on the Raspberry Pi and 0.094% ± 0.039 on UDOO BOLT

V3.

Overall, the UDOO BOLT V3 shows a much better results, with nearly twice less CPU and

RAM usage. However, even at transmission and reception rate of 100 Hz, the resource usage

of both devices is very minimal (<6%) and thus should not meaningfully impact real-world

performance.

3.1.2 Final Decision on Smart box hardware

Based on the results of our tests it is concluded that the UDOO BOLT V3 heavily out-

performs the Raspberry Pi 4B in CPU benchmarks, but shows a negligible difference in

memory usage. Nonetheless, these performance gains do not meaningfully impact the Smart

box functionality, for example, in the MQTT communication. This observation can also be

extended to other functionalities, such as the developer UI or the Python acquisition script,

which should have a similar resource load to the MQTT client in the MQTT benchmark, so

both SBCs are more than capable of assuring the necessary functions.

Additionally, the Raspberry Pi 4B comes out of the box with an included Wi-Fi+BLE

combo networking card, 8 GB of RAM (as the 8 GB model was chosen), and a much smaller

form factor – which is very useful for embedding the Smart box in the SmartBeds. And

this is at 1/7 the cost of UDOO BOLT V3, making this much more affordable to scale and

replicate the system with many Smart boxes.

Due to all the aforementioned reasons, Raspberry Pi 4B was chosen for the Smart box

development in the scope of the WoW project.

3.2 Communication with the Biostickers

As previously mentioned, the communication between the Biostickers and the Smart box

makes use of the BLE protocol. One of the advantages of using the Raspberry Pi 4B, as dis-

cussed in the previous section, is the fact that it already includes all networking functionality

needed for the project.

36

However, the communication with the Biostickers is very critical and demanding. During

the development of the project, the research team has decided to use a Biosticker coupled

with a commercially available Pulse Oximeter– used to measure oxygen saturation at the

fingertip – in order to capture all required biosignals. This means that the BLE acquisition

system must be capable of handling both communications simultaneously. With this in

mind, it is necessary to verify if the included BLE adapter of the Raspberry Pi board is

sufficient for the task, or if a different acquisition hardware should be considered instead.

In order to understand how data transmission works between BLE devices, some technical

background regarding the data transmission in protocol is presented.

3.2.1 Technical Background

The BLE protocol stack is organized into three major components, as shown in Figure 3.8:

the Application Layer, the Host Layer and Controller Layer.

Generic Attribute Protocol
(GATT)

Generic Access Profile (GAP)

Attribute Protocol (ATT)

Logical Link Control & Adaptation Protocol (L2CAP)

Security Manager
(SMP) Host

Host Controller Interface (HCI)

Controller
Physical Layer (PHY)

Link Layer (LL)

ApplicationApplication Layer (App)

Figure 3.8: Diagram of the different components of the BLE protocol stack. Adapted from

[44, 45]

The Physical Layer (PHY) and Link Layer (LL) components constitute the Controller

layer. The PHY is the bottom layer of the BLE stack, and is responsible for the transmission

and reception of information over radio waves on the Industrial Scientific Medical 2.4GHz

band. According to the latest revision of the specification [44], BLE supports 3 distinct

physical layers: LE 1M, LE 2M and LE Coded. Each of these define which modulation

speed (1 Msym/s or 2 Msym/s) and which coding scheme (S=1,2 or 8 bits) is used. LE 1M

37

is the default PHY which must be supported by BLE devices, with a bit rate of 1 Mbps

(1Msym/s with S=1). In the latest major revision of Bluetooth, the latter two PHYs were

introduced: LE 2M doubles the bit rate to 2 Mbps using a faster modulation scheme (2

Msym/s with S=1), whereas LE Coded has a much larger range (2x or 4x compared to LE

1M), at cost of a lower bit rate (500 kbps or 125 kbps) by using a different coding scheme

(1 Msym/s with S=2 or 8 bits respectively).

The Link Layer (LL) interfaces directly with the PHY, and manages the link state of

the radio. It also provides the mechanism for the higher layers to interact with the radio

transceiver.

Following the Link Layer (LL) is the Host Layer, containing the higher level components of

the protocol stack that interact with the application level layers. The L2CAP is responsible

for managing the data between the LL through the Host Controller Interface (HCI) and the

higher layers in the protocol stack. It abstracts the communication details from the higher

layers, handling seamlessly the fragmentation of the data into multiple LL data packets

for transmission and reassembly of LL data packets for higher layer protocols, such as the

Attribute Protocol (ATT).

ATT is the protocol used to expose the application data to other BLE devices through

data structures called “attributes”, which are the smallest addressable units of data used by

ATT. These entail three main properties [44]:

• An attribute type, defined by a Universally Unique Identifier (UUID)11, which indicates

the type of data that is stored in the attribute.

• An attribute handle, to uniquely identify that attribute on the device (which in this

case assumes the role of a server), allowing other devices (which assume the role of

clients) to refer the attribute for read and write requests;

• A set of permissions which limit the types of interactions.

However, from the application point of view, data is exchanged using Generic Attribute

Profile (GATT). GATT defines a service framework using the ATT protocol, with the

procedures used to exchange data between the BLE devices. Regarding GATT, there are

three main constructs to consider:
11https://tools.ietf.org/html/rfc4122

38

https://tools.ietf.org/html/rfc4122

• GATT Characteristic – The lowest level concept in GATT transactions is the Charac-

teristic, which encapsulates a single data point, e.g. a temperature measurement, an

accelerometer reading, etc. It also defines the different types of interactions, such as

reading, writing, subscribing for notifications, etc.

• GATT Service – A collection of GATT characteristics.

• GATT Profile – A collection of Services, usually predefined by Bluetooth Special In-

terest Group (SIG) in order to promote interoperability, which may also be customized

for the application’s needs.

The Security Manager (SMP) handles security in data transmissions, containing the se-

curity algorithms used to encrypt and decrypt the communication.

Finally, the Application Layer contains the user application, which interfaces with the

Bluetooth protocol stack.

BLE data transmission

Before discussing BLE data transmissions, it is important to introduce to certain termi-

nology which is commonly used:

• Central device (or master): Device that initiates commands and requests.

• Peripheral device (or slave): Device that receives commands and requests, and returns

responses.

• Connection Event: Moment of the connection where the devices engage in radio trans-

missions.

As seen previously, there are multiple layers that are involved in the transmission of data

in BLE. Figure 3.9 displays the format of a BLE data packet, showing how the data is

encapsulated for the transmission.

39

PDU (2 - 258 bytes)

Data PDU
Header

2 or 3
bytes

Payload (0 - 251 bytes)

L2CAP
Header

4 bytes

Payload (0 - 247 bytes)

ATT Header

Opcode

1 byte

ATT
Handle

2 bytes

ATT Payload

Up to 244 bytes

MIC
(Optional)

4 bytes

Access Address

4 bytes

Preamble

1 byte

CRC

3 bytes

Link Layer Data channel PDU GATT layerL2CAP layer

LSB MSB

Figure 3.9: BLE data packet format for an ATT write message using LE 1M PHY. Adapted

from [44, 45]. The Message Integrity Check (MIC) and Cyclic Redundancy Check (CRC),

which are not discussed above, are used for validating the integrity of the data packet.

Communication in BLE works in a particular manner. Instead of having the devices

transmit data whenever there is new information to exchange, the devices group their radio

transmissions in a brief time frame that occurs periodically, called the Connection Event

[44]. This allows devices to heavily reduce power consumption, as they can negotiate the

amount of radio “downtime” to minimize the amount of transmissions.

Figure 3.10 illustrates a Connection Event during a BLE communication between two

devices exchanging a single message, A and B. When the device A wants to communicate

to the device B, the data must be first fragmented into different LL data packets on the

L2CAP layer, which for this simple example is not considered. The data is transmitted to

device B through the LL layer, and the data is then reassembled on device B. When the

packet is received on device B, it must send a transmission to device A acknowledging the

reception of the packet (which contains an empty payload), as device A can only continue

transmitting after receiving the acknowledgement [44].

40

Host A LL A LL B Host B

Step 1 - Device A and B are in connection

HCI Data Packet

LL Data Packet

LL Ack

Number of Completed Packets HCI Data Packet

Figure 3.10: Message sequence chart between two BLE devices during a Connection Event.

Adapted from [44].

Multiple parameters guide how BLE data connections are performed [44], which are the

following:

• Slave Latency: Number of consecutive connection events that the slave device is not

required to listen for the master. It allows a slave to use a reduced number of connection

events, thus minimizing power consumption.

• Connection Interval: Time between two consecutive connection events.

• Supervisor Timeout: Maximum time between two received data Protocol Data Units

(PDU) before the connection is considered lost.

• Maximum Transmission Unit (MTU) for the ATT protocol: Length of the PDU for

the ATT protocol, which includes the ATT header as well as the payload containing

the data to be transmitted.

• Connection PHY: Modulation and coding scheme used for the connection.

BLE protocol stack on Linux

In the WoW project, the data acquisition has been developed using the official Linux im-

plementation of the BLE protocol stack [46] – BlueZ – in order to promote interoperability;

since these drivers are developed and used by the community, allowing us to use multiple

41

BLE adapters, and even different SBCs, using the same codebase without being tied down

to proprietary code.

3.2.2 Choosing a BLE adapter

As mentioned previously, one of the objectives of this dissertation work is to analyze if the

internal BLE adapter provided by the Raspberry Pi 4B is sufficient for the WoW project.

To achieve this, the adapter is compared with another commercially available adapter that

met the requirements for the project. These are the following:

• The adapter must support, at least, the Bluetooth 5.0 core specification.

• The adapter must natively support Ubuntu 20.04 LTS, as well as the BlueZ BLE

protocol stack.

After investigating the available market, the ASUS USB-BT500 USB adapter12 was chosen

due to its affordability and availability, making it an adequate fit for the project’s needs.

In the next section, multiple tests are conducted to evaluate the performance of ASUS

USB-BT500 against the internal BLE adapter in the Raspberry Pi 4B to reach a decision on

which BLE adapter hardware should be used for the transmission of data from the Biosticker

to the Smart box.

3.2.3 Testing BLE Communication

To ensure that a BLE adapter is capable of handling the communication on the Smart box,

two different tests were designed to evaluate their performance at different distances:

a) A test to evaluate the roundtrip time for a single message (for different sizes).

b) A test to evaluate the maximum bandwidth achievable at a given distance.

For these tests, it should be ensured that the conditions are very similar to those when ac-

quiring data from the Biostickers. To this end, the same microcontroller is used – nRF52832

SoC – which is used in the Biostickers, with our own custom firmware for the tests. There-

fore, the device which is used for the tests is the nRF52-DK developer kit13. The firmware
12https://www.asus.com/Networking-IoT-Servers/Adapters/All-series/USB-BT500/
13https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk

42

https://www.asus.com/Networking-IoT-Servers/Adapters/All-series/USB-BT500/
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk

for the microcontroller is built using the latest version of MbedOS14, an operative system

for ARM-based microcontrollers, and can be found here15.

Test Conditions

During the preparation and development of these tests, it was discovered that the ASUS

USB-BT500 supported an optional functionality which was not documented in its specifi-

cation – Data Length Extension (DLE). This feature, introduced in Bluetooth 4.2, allows

LL data packet payloads to increase significantly in size, up to 251 bytes (compared to the

23 bytes when not using this feature). It is also worth noting out of the 251 bytes, only

244 bytes can be used after taking into account the L2CAP and ATT overhead in the data

packet for write requests, as seen in Figure 3.9.

Additionally, LE 2M or LE Coded could not be used for the tests as the BLE stack

seemingly did not support these features, despite claiming support for them and all devices

used supporting these features.

In order to ensure replicability and reliability of the test results, the same connection

parameters are used for all tests, which are the following:

Table 3.2: BLE connection parameters used for the ASUS USB-BT500 adapter.

Connection Interval 7.5 ms

Slave Latency 0

Supervisor Timeout 500 ms

ATT MTU Length 247 bytes

PHY LE 1M

Table 3.3: BLE connection parameters used for internal Raspberry Pi 4B adapter.

Connection Interval 7.5 ms

Slave Latency 0

Supervisor Timeout 500 ms

ATT MTU Length 23 bytes

PHY LE 1M

14https://os.mbed.com/mbed-os/
15https://github.com/WoW-Institute-of-Systems-and-Robotics/ble-test-firmwares/

43

https://os.mbed.com/mbed-os/
https://github.com/WoW-Institute-of-Systems-and-Robotics/ble-test-firmwares/

These tests were conducted indoors, with the devices (the BLE adapter and the micro-

controller) in clear view of each other. All tests were performed at different distances: 0, 3,

6 and 9 meters. For distances greater than 9 meters the communication was observed to be

too unstable for both adapters. Figure 3.11 ilustrates the setup used for all BLE tests.

ASUS USB-BT500

nRF52-DKRaspberry Pi 4B

Figure 3.11: Setup used for all BLE tests.

Test 1: Roundtrip Time Measurement

In this first test, the roundtrip time of a single ATT data packet on a BLE connection is

measured for different payload sizes. For this test, the nRF52-DK board exposes a custom

GATT service containing 2 characteristics: one is updated by the Smart box (characteristic

“A”), and one to which the Smart box subscribes for notifications (characteristic “B”). When

the Smart box writes on characteristic “A” on the nRF52-DK GATT server, the GATT server

changes the value of the characteristic “B”, which triggers the transmission of a notification

to the Smart box. Thus, the roundtrip time measured is the time taken between the write

request on characteristic “A” and the reception of the notification of characteristic “B”.

The roundtrip time is measured for different ATT payload lengths, from 1 byte to the

maximum size supported by the adapter in 2 byte increments – i.e. payload size ps =

{1, 3, 5, . . . , 19} bytes for the internal Raspberry Pi 4B and ps = {1, 3, 5, . . . , 243} for

ASUS USB-BT500, and for different distances d = 0, 3, 6, 9 m. Each test configuration (i.e.

payload size and distance) has been run 5 times to ensure the consistency of the results, for

a total of 2640 independent tests. Figures 3.12-3.19 show the average values measured and

their standard deviations for different distances.

44

0 5 10 15 20
Payload Size (bytes)

0

20

40

60

80

100

120

140
Av

er
ag

e
Ro

un
dt

rip
 T

im
e

(m
s)

Figure 3.12: Average BLE connection

roundtrip time obtained using Raspberry

Pi 4B’s internal BLE adapter at a dis-

tance of 0 m.

0 5 10 15 20
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)

Figure 3.13: Average BLE connection

roundtrip time obtained using Raspberry

Pi 4B’s internal BLE adapter at a dis-

tance of 3 m.

0 5 10 15 20
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)

Figure 3.14: Average BLE connection

roundtrip time obtained using Raspberry

Pi 4B’s internal BLE adapter at a dis-

tance of 6 m.

0 5 10 15 20
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)

Figure 3.15: Average BLE connection

roundtrip time obtained using Raspberry

Pi 4B’s internal BLE adapter at a dis-

tance of 9 m.

45

0 50 100 150 200 250
Payload Size (bytes)

0

20

40

60

80

100

120

140
Av

er
ag

e
Ro

un
dt

rip
 T

im
e

(m
s)

Figure 3.16: Average BLE connection

roundtrip time obtained using the ASUS

USB-BT500 adapter at a distance of 0 m.

The data takes the shape similar to that

of a “stepping function”, as such, differ-

ent colors are used to highlight clusters of

data that correspond to different steps.

0 50 100 150 200 250
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)
Figure 3.17: Average BLE connection

roundtrip time obtained using the ASUS

USB-BT500 adapter at a distance of 3 m.

The data is colored according to the clus-

ters of data found in Figure 3.16.

0 50 100 150 200 250
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)

Figure 3.18: Average BLE connection

roundtrip time obtained using the ASUS

USB-BT500 adapter at a distance of 6 m.

The data is colored according to the clus-

ters of data found in Figure 3.16.

0 50 100 150 200 250
Payload Size (bytes)

0

20

40

60

80

100

120

140

Av
er

ag
e

Ro
un

dt
rip

 T
im

e
(m

s)

Figure 3.19: Average BLE connection

roundtrip time obtained using the ASUS

USB-BT500 adapter at a distance of 9 m.

The data is colored according to the clus-

ters of data found in Figure 3.16.

46

Theoretically, the roundtrip time for different payload sizes in a BLE connection should

be a single line, or at most a step function as seen in Figure 3.19. This occurs because

the amount of radio time allocated for each connection event is limited according to the

connection parameters that are exchanged by both devices. If the device is not capable of

sending the entire message in the radio time allocated for a single PDU, then it is fragmented

over multiple PDUs which can span over multiple Connection Events. Since these occur

periodically according to the Connection Interval exchanged at the start of the connection,

it creates the “step” effect mentioned. Additionally, even though the transmission time to

exchange the payload increases linearly with the size of the payload, from the Application

Layer standpoint, this may not be directly observed since most BLE stacks handle the

communication differently. All BLE stacks used in these tests notify the Application Layer

only after processing all radio events, therefore it should not be possible to receive a message

and reply to it in the same Connection Event, thus the transmission of any message must

take at least one Connection Interval to be received and processed by the device.

In all tests, both adapters were observed to have a minimum roundtrip time: approxi-

mately 40 ms. This is a somewhat unexpected value, given that the connection interval is

set to 7.5 ms. This means that the time it takes to transmit a single message and receive

it on the Smart box takes more than 4 connection intervals, which is more than double of

what is expected: one interval for the transmission of the packet to the nRF52-DK and

one interval to retrieve the packet, totaling 7.5 + 7.5 = 15 ms + processing time overhead

at the application level. Since the roundtrip time accounts for both the transmission and

reception of the data packet, this indicates that a ∼12 ms delay exists in every transmission

and reception of data.

As discussed in Section 3.2.3, the DLE functionality support gives a head start for the

ASUS USB-BT500, as it is capable of sending over 10 times more data in a single packet,

compared to the Raspberry Pi 4B’s internal BLE adapter, which does not support it. The

roundtrip times measurements become significantly noisy as the distance increases, as ex-

pected, but it is particularly egregious as the payload size approaches the MTU length on

the ASUS USB-BT500 tests at 9 m in Figure 3.19.

As mentioned previously, the graphs for the ASUS USB-BT500 tests, in particular in

Figure 3.16, have a shape similar to that of a step function. By analyzing the data from

47

Figure 3.16, it is observed that each step has an average width of 36.2 ± 0.98 bytes, and a

difference of 9.18 ± 1.18 ms (which is quite close to the connection interval, 7.5 ms). This

likely indicates that the data is being fragmented on the L2CAP layer every ∼36 bytes

(i.e. it is the maximum payload size that is being sent in a single connection event), and

split across multiple connection intervals, instead of being transmitted in a single packet.

Additionally, the fact that it increments in steps of 1 Connection Interval could also suggest

that the fragmentation only occurs from one of the transmissions – either the transmission

from the adapter to the nRF52-DK or from nRF52-DK to the adapter.

Moreover, this could imply that the observed delay is most likely a bottleneck on the

BlueZ Linux API, delaying the transmission of data from the user level to the lower levels

of the BLE protocol stack and vice versa, as the roundtrip time increases in increments of

the connection interval (albeit slightly higher than it) with the payload size, which is the

expected behavior, pointing to an issue on the BLE stack implementation.

Overall, it is observed that in order to maximize data throughput, the maximum supported

payload size should be used to minimize the impact of the ∼12 ms delay on the transmission.

Test 2: Bandwidth Measurement

In this second test, the bandwidth for the BLE connection is measured by adjusting the

transmission rate of the data sent, or more accurately, the time between the transmission of

each packet. The test has been performed by reducing the time between transmissions from

500 ms to 10 ms, in 5 ms decrements, until the communication is stopped. In the graphs,

this is converted to transmission rate in order to facilitate the interpretation of data.

For this test, the nRF52-DK board exposes 7 GATT characteristics for the Smart box to

subscribe to, which corresponds to the maximum amount of concurrent subscriptions using

BlueZ. This was determined empirically during the setup for the tests. The nRF52-DK then

continuously changes the value of the characteristic, immediately triggering a notification

to the Smart box – one for each characteristic. The transmission rate is increased until the

limit of the connection, which eventually becomes too unstable and suddenly terminates.

The payload size used on each characteristic corresponds to the maximum ATT payload

observed in the roundtrip test – 20 bytes for the internal BLE adapter and 244 bytes for the

ASUS USB-BT500 adapter.

48

Figures 3.20-3.27 show the bandwidth graphs obtained for each test configuration for each

adapter. Each test configuration (i.e. transmission rate and distance) has been run 3 times

to ensure the consistency of results, for a total of 2376 independent tests.

10 20 30 40
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100
Pa

ck
et

 L
os

s (
%

)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.20: BLE connection bandwidth

obtained using the Raspberry Pi 4B in-

ternal BLE adapter at a distance of

0 m. The maximum bandwidth achieved

at this distance was 22.9 ± 7.34 kbps,

achieved at 40 Hz with 43.5% packet loss.

10 20 30 40
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.21: BLE connection bandwidth

obtained using the Raspberry Pi 4B inter-

nal BLE adapter at a distance of 3 m. The

maximum bandwidth achieved at this dis-

tance was 24.2±7.25 kbps, achieved at 40

Hz with 41.0% packet loss.

49

10 20 30 40
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.22: BLE connection bandwidth

obtained using the Raspberry Pi 4B in-

ternal BLE adapter at a distance of

6 m. The maximum bandwidth achieved

at this distance was 24.8 ± 7.43 kbps,

achieved at 33.33 Hz with 27.2% packet

loss.

10 20 30 40
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.23: BLE connection bandwidth

obtained using the Raspberry Pi 4B in-

ternal BLE adapter at a distance of

9 m. The maximum bandwidth achieved

at this distance was 24.8 ± 6.35 kbps,

achieved at 33.33 Hz with 28.9% packet

loss.

2.5 5.0 7.5 10.0 12.5 15.0
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.24: BLE connection bandwidth

obtained using the ASUS USB-BT500

adapter at a distance of 0 m. The maxi-

mum bandwidth achieved at this distance

was 175.0 ± 6.23 kbps, achieved at 13.33

Hz with 2.13% packet loss.

2.5 5.0 7.5 10.0 12.5 15.0
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.25: BLE connection bandwidth

obtained using the ASUS USB-BT500

adapter at a distance of 3 m. The maxi-

mum bandwidth achieved at this distance

was 193.0± 0.779 kbps, achieved at 14.29

Hz with 0.25% packet loss.

50

2.5 5.0 7.5 10.0 12.5 15.0
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.26: BLE connection bandwidth

obtained using the ASUS USB-BT500

adapter at a distance of 6 m. The maxi-

mum bandwidth achieved at this distance

was 182.0±0.0132 kbps, achieved at 13.33

Hz with 0% packet loss.

2.5 5.0 7.5 10.0 12.5 15.0
Transmission Frequency (Hz)

0

50

100

150

200

Ob
se

rv
ed

 T
hr

ou
gh

pu
t (

kb
ps

)

0

25

50

75

100

Pa
ck

et
 L

os
s (

%
)

Run 1
Run 2
Run 3
Avg. Packet Loss

Figure 3.27: BLE connection bandwidth

obtained using the ASUS USB-BT500

adapter at a distance of 9 m. The maxi-

mum bandwidth achieved at this distance

was 164.0±8.08 kbps, achieved at 12.5 Hz

with 2.53% packet loss.

The maximum bandwidth for a BLE connection can be estimated using the sequence

diagram in Figure 3.10 and packet format in Figure 3.9. To simplify the calculation, it

is assumed that the devices can transmit as much data as possible within the Connection

Event, which is considered to be as long as the Connection Interval (7.5 ms). As mentioned

in Section 3.2.3, all BLE connections for these tests use LE 1M modulation, which has a bit

rate of 1 Mbps. Additionally, the distance between the devices is also not considered in the

calculation, as the time delay associated with distance is approximately 4 ns/m [44] while

the modulation time is 1 µs/bit, and therefore can be safely disregarded. Thus, the time to

transmit a single BLE message is:

tT X = (17 + pl)× 8 bits/byte× 1 µs/bit = 8× pl + 136 µs, (3.1)

where pl is the ATT payload length. Since this packet must be acknowledged, two other

factors must also be considered:

1. Time to transmit the acknowledgement packet, which has an empty ATT payload and

does not include the ATT header: tRX = (1 + 4 + 3 + 2 + 4 + 1)× 8 = 120 µs.

2. Minimum time interval between consecutive packets on the same radio channel: tIF S =

150 µs.

51

Thus, the total time is:

tt = tT X + tIF S + tRX + tIF S = 8× pl + 556 µs, (3.2)

With this information, a function to estimate the maximum throughput can be determined,

by calculating the number of packets that can be transmitted in a single connection interval

of 7.5 ms:

Bmax =
⌊

7.5× 1000
8× pl + 556

⌋
× 8× pl

7.5 kbps. (3.3)

This yields Bmax = 213.33 kbps for the payload length used in the internal adapter tests

and Bmax = 520.53 kbps for the payload length used in the ASUS USB-BT500 tests, which

are very different from those observed in the tests. Unfortunately, there are many factors

which influence throughput, such as memory constraints on the BLE implementations that

limit the amount of messages that can be sent in single Connection Event, and other pro-

cessing delays that impact the throughput [47], which are extremely difficult to account for

as the underlying causes are not evident most of the time. For example, in the roundtrip

test a 12 ms delay is observed for transmission / reception of data, but it is not possible to

determine exactly in which layer the delay (or delays) are occurring as the tools available

for troubleshooting these issues on Linux are limited.

Additionally, packet loss can be observed as transmission frequency increases, reaching

closer to the “breaking point” where the connection suddenly crashes, as expected. However,

the internal BLE adapter shows a much more noticeable packet loss (particularly when

the transmission frequency is greater than 15 Hz). This, coupled with the analysis of the

previous tests, likely indicates that these losses are caused by limitations of the BLE stack

rather than the adapter itself, i.e. the existing BLE implementation cannot handle these

high transmission rates properly, and higher payload sizes are preferred instead. This would

also explain why the packet loss is nearly 0% for the ASUS USB-BT500 tests before reaching

the “breaking point”, since it uses a much higher payload size.

Using these tests, it is possible to determine the adequacy of these adapters for handling the

BLE communication with the Biostickers using the data sizes and transmission frequencies

from Section 3, where it is seen that the communication with the Biostickers uses close to

3.593 kbps of bandwidth. Both adapters are more than capable of handling that bandwidth,

52

for any distance up to 9 meters, however, they cannot reach the 20 Hz transmission frequency

required by the ECG data communication without significant packet loss due to limitations

of the BLE stack, as discussed previously. In order to use the Biostickers without packet

loss, the data must be grouped and sent in larger packets, thus lowering the transmission rate

and increasing the packet size in order to bypass these limitations, however this approach is

only possible using the ASUS USB-BT500 BLE adapter since it supports packet sizes up to

244 bytes, unlike the Raspberry Pi 4B internal BLE adapter.

Curiously, some graphs show better throughput for intermediate distances rather when

the devices are next to each other, e.g. for Figure 3.20 at 0 m and 3.21 at 3 m. This is

likely caused by misalignment of the devices, which can slightly improve the efficiency of the

power transfer in radio transmissions (as no information about the BLE adapter antennas

is known), improving the stability of the connection and thus allowing the usage of a higher

transmission rate before the connection crashes. Moreover, as expected from the previous

tests, ASUS USB-BT500 shows a much better throughput since it can transmit more data

in the LL data packets.

3.2.4 Decision on the BLE adapter

From the previous tests, it is observed that the Raspberry Pi 4B’s internal BLE adapter

lacks the support for DLE feature, which reduces greatly the communication throughput.

Additionally, this maximum throughput on Raspberry Pi 4B is achieved with an extremely

high packet loss (over 40%). This suggests that to make full use of this adapter, the sys-

tem and communications must be designed considering this packet loss, or reduce the BLE

throughput to minimize the packet loss. The ASUS USB-BT500 on the other hand has a

throughput 10 times larger than the internal adapter, with very low packet loss (which can

be mitigated by slightly reducing the throughput).

Due to all the aforementioned reasons, the ASUS USB-BT500 adapter was chosen for the

development of BLE data acquisition in the scope of the WoW project.

3.3 Summary

In this chapter, a comprehensive performance study of the different SBCs considered for

the Smart box development was presented, as well as an extensive analysis of the BLE data

53

communication.

In the next chapter, the development of the next component in the proposed IoT archi-

tecture is presented – the Smart Gateway.

54

4 Smart Gateway Development

In the proposed architecture, the Smart Gateway is the central module of the system, con-

necting the Smart boxes to the HIS. It is responsible for the management of devices and

their associations – Smart box to Biosticker and Smart box to user – managing, maintaining

and storing the data that is generated by these, as well as handling any communication to

and from the HIS.

Regarding the hardware platform used for the Smart Gateway, in the context of the WoW

project, the Intel NUC NUC8i7BEH16 is used, as seen in Figure 4.1. Table 4.1 shows the

hardware specification of the Intel NUC kit used.

Figure 4.1: Intel NUC NUC8i7BEH.

Table 4.1: Intel NUC Kit NUC8i7BEH specification.

Memory 16 GB DDR4-2400MHz

CPU Intel Core i7-8559U Processor (8M Cache, up to 4.50 GHz)

GPU Iris Plus Graphics 655

Mass Storage 1 TB SSD

Operating System Ubuntu Server 20.04.2 LTS

16https://ark.intel.com/content/www/us/en/ark/products/126140/intel-nuc-kit-nuc8i7beh.

html

55

https://ark.intel.com/content/www/us/en/ark/products/126140/intel-nuc-kit-nuc8i7beh.html
https://ark.intel.com/content/www/us/en/ark/products/126140/intel-nuc-kit-nuc8i7beh.html

In the next sections, a service architecture for the Smart Gateway is proposed in order to

fulfill the aforementioned features.

4.1 Service Architecture

As seen in Section 2.4, there are multiple key features that form the Smart Gateway. The

different Smart Gateway components are:

• Manage devices and device associations: The Smart Gateway maintains a list of

all the Smart boxes that are managed by the system, as well as every Biosticker and

every sensor in the Biosticker (which are used to indicate the respective biosignal to

the HIS). The Smart Gateway also tracks the sensor subscriptions per Smart box.

• Data anonymization: Any private data (i.e. information that can be used to identify

a user) that is stored in the Smart Gateway is anonymized in order to meet data

protection regulations17.

• Data pre-processing: The Smart Gateway processes the data as it is collected in

order to clean the data before storing it indefinitely, and to detect critical conditions

of the patients’ state to prompt an immediate notification to the health professionals.

• Real-time data acquisition: The Smart Gateway handles the secure communica-

tions with the Smart boxes, acquiring the data in real-time.

• Manage data collection: After receiving and processing the data from the Smart

boxes, the Smart Gateway stores indefinitely for long-term biomonitoring analytics.

• HIS FHIR Integration: The Smart Gateway handles the communication with the

HIS. More specifically, it processes all FHIR requests from the HIS, and also transforms

the acquired sensor data into FHIR messages and communicates it to the HIS.

To implement these components, the following service architecture within the Smart

Gateway is proposed, as illustrated in Figure 4.2. The correspondence between the services

and the Smart Gateway components is described in Table 4.2.
17Resolution of the Council of Ministers no. 41/2018, of 28 March, following the new General Data

Protection Regulation (GDPR), approved by Regulation (EU) 2016/679: https://dre.pt/application/

file/a/114936962%20

56

https://dre.pt/application/file/a/114936962%20
https://dre.pt/application/file/a/114936962%20

Custom Authorization &
Authentication Plugin

SmartBox
Communications

HIS
Communications

MQTT Broker

Data storage

Data processing

FHIR Server

Unix
Socket

Unix
Socket

Figure 4.2: Service architecture implemented in the Smart Gateway. The diagram displays

the different technologies used throughout the development.

Table 4.2: Correspondence between the Smart Gateway services and its functional compo-

nents.

Smart Gateway Component Smart Gateway Service Description

Real-time data acquisition MQTT Broker
Service that handles communication with

the Smart boxes, ensuring data

encryption, authorization, etc.

Data pre-processing Data processing
Data filtering and preliminary data

processing.

Manage data collection

Manage devices and device associations
Data storage

Management and storage system information,

such as the list of devices, permissions of each

device and collected sensor data.

Data anonymization
FHIR Server

Service that handles communications with

the “Interoperability” layer of HIS.HIS FHIR Integration

The services communicate with one another using UNIX Domain Sockets18. This is an

interprocess communication (IPC) protocol that enables efficient communication between

processes running on the same host operative system. This protocol is very efficient, com-

pared for example to traditional network sockets [48], since all communication is handled

entirely by the operative system kernel, instead of relying on the IP protocol stack, mini-

mizing communication overhead.

The protocol can make use of the Linux file system for addressing the sockets, which

means it is subject to Linux file system permissions. This allows applications to identify

which process, or more accurately, the user running the process, who is attempting to es-

tablish a new connection to that application, providing a simple and secure authentication

mechanism on the IPC.
18https://man7.org/linux/man-pages/man7/unix.7.html

57

https://man7.org/linux/man-pages/man7/unix.7.html

4.2 Data Storage

Data storage in the Smart Gateway is one of the most important components of the device,

as it holds the information used by all services in the Smart Gateway. Given the importance

of this component, it is crucial to use a solution which offers reliability above all, with proved

performance for our use case.

As discussed in Section 2.2.4, NoSQL databases are appealing for IoT applications, since

these can handle unstructured or semi-structured data and generally perform better than

traditional SQL databases as the amount of data stored increases. However, these systems

are not adequate for a relational data model, which is required to enforce consistent and

logical representation of information. For this reason, a traditional Relational Database

Management System (RDBMS) has been deployed for data storage in the system.

Out of the different RDBMSs available in the market, PostgreSQL stands out due to its

overall performance and scalability [49]. Additionally, it is one of the most popular RDBMS

[50], meaning it also has significant community support.

With this in mind, PostgreSQL has been chosen as the data storage technology in the

Smart Gateway. PostgreSQL19 is an advanced, enterprise-class, and open-source RDBMS.

It has over 30 years of active development by the open source community, earning a strong

reputation for its reliability, feature set and robustness.

4.2.1 Database Schema

Figure 4.3 contains the database model implemented in our PostgreSQL database. It de-

scribes all information that is contained in the Smart Gateway, the relations within that

data, organized according to how that information is used (i.e. the service / functionality it

is associated with). The data stored in the system can be categorized into 5 distinct groups:

1. System data – Information about the devices which are managed by the system: the

Smart boxes, the Biostickers and the sensors in each Biostickers.

2. MQTT related data – Information about the MQTT clients and their permissions.
19https://www.postgresql.org

58

https://www.postgresql.org

mqtt.clients

id

client_uuid

last_connection

lwt_sent_on_last_connection

role_id

mqtt.roles

id int

role_name text

mqtt.role_permissions

id int

role_id int

topic_wildcard text

intaccess_type

system.smartboxes

id int

client_id int

textalias

system.biostickers

id int

biosticker_uuid uuid

current_smartbox_id int

alias text

macaddrmac_address

system.biosticker_pair_event

id int

smartbox_id int

biosticker_id int

start_date timestamp

sensor_observation.temperature

id int

smartbox_id int

sensor_id int

timestamp timestamp

temperature float

is_celsius boolean

system.biosticker_sensors

id int

sensor_type text

biosticker_id int

sensor_uuid uuid

sensor_observation.ecg

id int

smartbox_id int

sensor_id int

timestamp timestamp

raw_data bytea

sensor_observation.heart_rate

id int

smartbox_id int

sensor_id int

timestamp timestamp

bpm int2

sensor_observation.pulseoximetry

id int

smartbox_id int

sensor_id int

timestamp timestamp

spo2 float

sensor_observation.respiration_rate

id int

smartbox_id int

sensor_id int

timestamp timestamp

respiration_rate float

sensor_observation.imu

id int

smartbox_id int

sensor_id int

timestamp timestamp

raw_data json

pose_description pose_description_enum

Caption

MQTT Related Tables -

System Data Tables -

Sensor Data Tables -

FHIR Related Tables -

*

*

*

*

1

fhir.subscriptions

id int

sensor_id int

start_date timestamp

timestampend_date

period interval

status subscription_status_enum

bool

timestamp

uuid

int

int

*

*

*

*

*

*

*

*

*

*

*

1

*

1

1

1 1

1

*

*

Figure 4.3: Database model implemented in the Smart Gateway. The bold text in the

diagram is used to denote the Primary Key (PK) of each table. The relationships between

entities are indicated with a line and using the symbols “*” for many and “1” for one.

3. Sensor observation data – Biosignals measured and communicated by the Smart

boxes.

4. FHIR data – Data related with FHIR communications, such as the subscription

59

requests from the HIS to communicate the acquired sensor measurements.

5. Stored procedures – Custom subroutines that define the operations used by other

services (e.g. the MQTT broker) to interact with the stored data (insertions, deletions,

searches, etc.).

In the next sections, the structure of the data within each of these groups is explored in

greater detail.

System data

Figure 4.4 describes the components or entities of the database model that depict system

information. The data model is designed with flexibility in mind, allowing each Smart box

to be associated with any number of Biostickers, and each Biosticker to have any number

of sensors associated to it.

Each sensor is uniquely identified by an UUID when communicating the sensor measure-

ment to the HIS. As the names suggest, the “system.biostickers” table contains the list

and details of all Biostickers, “system.smartboxes” table contains the list and details of all

Smart boxes, “system.biosticker_sensors” contains the list and details of all sensors of all

Biostickers. The “system.biosticker_pair_event” table is used to track the history of which

Biostickers were or are currently associated with a specific Smart box.

mqtt.clients

id

client_uuid

last_connection

lwt_sent_on_last_connection

role_id

system.smartboxes

id int

client_id int

textalias

system.biostickers

id int

biosticker_uuid uuid

current_smartbox_id int

alias text

macaddrmac_address

system.biosticker_pair_event

id int

smartbox_id int

biosticker_id int

start_date timestamp

system.biosticker_sensors

id int

sensor_type text

biosticker_id int

sensor_uuid uuid

bool

timestamp

uuid

int

int

1

*

1

1

1

*

*

Figure 4.4: Components of the database model used to describe system information.

60

MQTT related data

Figure 4.5 describes the information relevant for MQTT communications, mostly related

with security. To ensure that each device only has access to allowed resources, the system

implements a role-based access control (RBAC) policy. In this type of access control, the

system allows or revokes access to resources according to the role of the device, meaning

that all devices with a given role share the same list of permissions. The permissions for the

RBAC policy contain 3 properties: the ID of the role it applies to, the topic name, and the

level of access (PUBLISH, SUBSCRIBE and/or READ) to be granted (or revoked), as seen

in Figure 4.5. READ access in this context is the ability to receive messages from the broker

when subscribed to that topic. SUBSCRIBE access is the ability to issue a subscription

request, and PUBLISH the ability to publish messages.

In context of the WoW project, the following roles are used:

• Smart box role: Indicates that the MQTT client is a Smart box.

• “Pyservice” role: Indicates that the MQTT client is actually the data pre-processing

service, also contained in the Smart Gateway.

• Developer device role: Indicates that the MQTT client is a developer device, used

solely for debugging purposes.

The “mqtt.roles” table contains the different RBAC roles for the MQTT communication

and “mqtt.role_permissions” table lists the permissions available to each role using MQTT

topic wildcards. The “mqtt.client” table lists the clients and their properties, such as their

UUID, the timestamp of their last connection, or a flag to indicate if the communication

failed during the last communication.

61

mqtt.roles

id int

role_name text

mqtt.role_permissions

id int

role_id int

topic_wildcard text

intaccess_type

system.smartboxes

id int

client_id int

textalias

*

* *

1

1

mqtt.clients

id

client_uuid

last_connect

lwt_sent_on_last_connection

role_id

bool

timestamp

uuid

int

int

Figure 4.5: Components of the database model used to describe MQTT information.

Sensor observation data

Figure 4.6 describes the information of the sensor measurements collected over time. Each

signal measurement is associated with the sensor that measured it and the Smart box that

is associated to that sensor, or more accurately, associated to the Biosticker, at the moment

of the observation.

The database model has one table for each type of biosignal measured in the WoW project

(temperature, ECG, etc.). The properties of the table are defined according to the struc-

ture of the data that is acquired by the Smart box, which are detailed in Section 3. The

“pose_description” field in “sensor_observations.imu” table is a text representation of the

different body poses according to an international health standard20.

system.smartboxes

id int

client_id int

textalias

sensor_observation.temperature

id int

smartbox_id int

sensor_id int

timestamp timestamp

temperature float

is_celsius boolean

system.biosticker_sensors

id int

sensor_type text

biosticker_id int

sensor_uuid uuid

sensor_observation.ecg

id int

smartbox_id int

sensor_id int

timestamp timestamp

raw_data bytea

sensor_observation.heart_rate

id int

smartbox_id int

sensor_id int

timestamp timestamp

bpm int2

sensor_observation.pulseoximetry

id int

smartbox_id int

sensor_id int

timestamp timestamp

spo2 float

sensor_observation.respiration_rate

id int

smartbox_id int

sensor_id int

timestamp timestamp

respiration_rate float

sensor_observation.imu

id int

smartbox_id int

sensor_id int

timestamp timestamp

raw_data json

pose_description pose_description_enum

*

*

*

*

*

*

*

*

*

*

*

*

1

1

Figure 4.6: Components of the database model used to describe sensor measurements.

20https://loinc.org/8361-8/

62

https://loinc.org/8361-8/

FHIR data

Figure 4.7 describes the information associated with the FHIR communications. Currently,

the only information that is stored in the database is the list of subscription requests sent

from the HIS. The “status” field in the “fhir.subscription” table indicates the status of

the subscription request (active, completed, revoked, etc.) and should be a text value that

matches its equivalent in the FHIR enumeration [51].

smartboxes

id int

client_id int

textalias

1

system.biostickers

id int

biosticker_uuid uuid

alias text

current_smartbox_id int

macaddrmac_address

biosticker_pair_event

id int

smartbox_id int

biosticker_id int

start_date timestamp

system.biosticker_sensors

id int

sensor_type text

biosticker_id int

sensor_uuid uuid

*

1

*

*

*

1

mqtt.clients

id int

client_uuid uuid

timestamplast_connect

lwt_sent_on_last_connection bool

role_id int
fhir.subscriptions

id int

sensor_id int

start_date timestamp

timestampend_date

period interval

status subscription_status_enum

*

1
1

*

Figure 4.7: Components of the database model used to describe information used for FHIR.

Stored Procedures

Since the data storage implemented in the Smart Gateway is a RDBMS, services that access

the database use Structured Query Language (SQL) to perform requests, such as retrieving

or inserting data. In order to maximize the performance of our data storage solution “Stored

Procedures” are implemented, which are custom subroutines that are stored in the RDBMS.

These procedures are pre-compiled SQL statements, which are simply a set of instructions

that perform a given task, that are defined in the RDBMS, and can greatly improve the

performance of these systems since these:

• Reduce significantly the amount of data that is exchanged – instead of sending a

request with a complex SQL query to the database, the application sends a request for

the execution of a subroutine along with its parameters, thus reducing the size of the

request and the time it takes to interpret it.

• Reduce significantly the amount of data that is exchanged – as these SQL statements

are optimized when pre-compiled.

63

• Increase the security and robustness of the database system – since the SQL statements

are pre-compiled, this mitigates possible SQL injections attacks [52], also providing us

with the ability to restrict the permissions of the applications that access the RDBMS

to execute only certain subroutines, instead of allowing them to perform general SQL

requests.

In total, over 33 procedures have been implemented in the data storage. These pro-

cedures are very simple, e.g. the “system.insert_temperature_observation” procedure is

implemented as follows:

1 CREATE PROCEDURE system . insert_temperature_observation (

ref_sensor_uuid uuid , ref_timestamp timestamp with time zone ,

ref_temperature double precision , ref_is_celsius boolean)

LANGUAGE plpgsql SECURITY DEFINER

2 AS $$

3 DECLARE ref_sensor_id integer ;

4 ref_smartbox_id integer ;

5 BEGIN

6 SELECT system . biostickers . smartbox_id ,

7 system . biosticker_sensors .id INTO ref_smartbox_id ,

8 ref_sensor_id

9 FROM system . biosticker_sensors

10 INNER JOIN system . biostickers ON (

11 system . biosticker_sensors . biosticker_id = system . biostickers .id

12)

13 WHERE system . biosticker_sensors . sensor_uuid = ref_sensor_uuid ;

14 INSERT INTO sensor_observations . temperature (

15 smartbox_id , sensor_id , timestamp , temperature , is_celsius)

16 VALUES (

17 ref_smartbox_id , ref_sensor_id , ref_timestamp ,

18 ref_temperature , ref_is_celsius);

19 END;

20 $$;

64

4.3 Connection to the Smart boxes

As previously mentioned, the connection to the Smart boxes is performed via MQTT. In

this system, the MQTT broker is contained within the Smart Gateway, and is the service

responsible for ensuring the communication between the Smart boxes and the Smart Gateway.

To implement this broker, the open-source Eclipse Mosquitto [53] has been used. Mosquitto

is a lightweight MQTT broker that supports the MQTT protocol versions 5.0, 3.1.1 and 3.1

and is widely used by the community, making it a fitting solution for the WoW project.

However, in order to implement all security features required, its existing functionality must

be expanded upon, this is further discussed in Section 4.3.2.

Firstly, the intricacies of the MQTT communication between the Smart box and Smart

Gateway must be defined. To this end, a complete specification is proposed, detailing the all

security measures implemented, the format for the messages exchanged in the communication

and the different endpoints (or topics) used.

4.3.1 Proposed MQTT Specification

The MQTT standard to be used in all communications is the latest revision21, MQTT 5.0.

Additionally, to authenticate and encrypt transmissions between devices, the communication

is secured with TLS v1.222 and each MQTT client must have its own X.509 V323 certificate

and UUID to uniquely identify it. The aforementioned certificate must have the client UUID

in the “Common Name” field, which is used to ensure that the certificate is issued to that

specific MQTT client.

Regarding security, as mentioned previously, the system uses a role-based access control

(RBAC) policy to authorize access to the MQTT topics. This means that devices of the

same type (e.g. Smart boxes) share the same permissions. Nonetheless, the access of the

devices can be restricted to its own individual topics by including a client UUID wildcard

in the topic name when assigning the permission.
21https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
22https://tools.ietf.org/html/rfc5246
23https://tools.ietf.org/html/rfc5280

65

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5280

For example, a permission that grants PUBLISH access to the “smartbox/%c/temperature”

topic to all Smart boxes can be defined, where “%c” is a wildcard for the client UUID. This

means that a Smart box with client UUID “1” can publish a message to the topic “smart-

box/1/temperature”, but cannot publish to “smartbox/2/temperature”.

Message Format

In order to promote interoperability, all messages exchanged in the MQTT communication

must follow the JSON data format. Additionally, these must have the following structure:

1 {

2 " client_id ": client_uuid ,

3 " timestamp ": timestamp ,

4 " message_type ": message_type ,

5 " payload ": {

6 //...

7 },

8 }

where client_id is the UUID of the MQTT client, timestamp is the UNIX timestamp24,

and payload contains the actual content of the message that is associated to the mes-

sage_type. The field message_type defines what type of message it is, and must be one

of the following:

• “MEASUREMENT_TEMPERATURE”: Indicates that the message is a temperature

measurement.

• “MEASUREMENT_IMU”: Indicates that the message is an IMU measurement.

• “MEASUREMENT_HR”: Indicates that the message is a heart rate measurement.

• “MEASUREMENT_ECG”: Indicates that the message is an ECG measurement.

• “MEASUREMENT_PULSEOXIMETRY”: Indicates that the message is a pulse oxime-

try measurement.

• “MEASUREMENT_RESPIRATION”: Indicates that the message is a respiratory rate

measurement.

For the payload formats of each of these messages, the reader is referred to Appendix A.
24https://www.unixtimestamp.com/

66

https://www.unixtimestamp.com/

Data endpoints

To communicate the sensor data, the Smart box must publish to different endpoints, de-

pending on the type of sensor data that is transmitted:

• Temperature data: “smartbox/%c/temperature”.

• Inertial Measurement Unit (IMU) data: “smartbox/%c/imu”.

• Electrocardiogram (ECG) data: “smartbox/%c/ecg”.

• Pulse Oximetry data: “smartbox/%c/pulseoximetry”.

• Heart Rate data: “smartbox/%c/heartrate”.

• Respiration Rate data: “smartbox/%c/respiration”.

4.3.2 Authorization and Authentication Plugin

One of the major flaws of Mosquitto is that it does not supply proper dynamic authentication

and authorization mechanisms for the MQTT communication out-of-the box. By default, the

list of MQTT authorized clients and their permissions are static, defined by a configuration

file which is processed at the start of the program [53]. In order to implement proper security

measures, Mosquitto exposes an extensive plugin API [53] that covers authentication, access

control, and message inspection and modification; which is used to develop our own custom

plugin to fulfill the security requirements for the WoW project. The code for the plugin can

be found here25.

The plugin works by intercepting authorization and authentication requests from the

MQTT broker, and validating the information in them.

Figure 4.8 describes how a client is authorized by the MQTT broker. The process starts

with the X.509 certificate validation at the TLS layer. If the certificate is valid, Mosquitto

proceeds by sending an authentication request for that client to the plugin. In the plugin,

X.509 certificate information is validated, in particular the “Common Name” field, and

ensure the client is registered in the database.
25https://github.com/WoW-Institute-of-Systems-and-Robotics/mosquitto-auth-plugin

67

https://github.com/WoW-Institute-of-Systems-and-Robotics/mosquitto-auth-plugin

Client initiates a
connection with the

broker

Yes

No No

Is the
certificate of

the client valid and
issued by an
authorized

CA?

Unauthenticated client,
disconnect immediately

Mosquitto triggers an
authentication event

Yes

Does the
"Common Name"
entry in certificate
match the client

UUID?

Mosquitto

Plugin

No

Yes

Is the client UUID
registered in the

database?

Plugin requests list of
clients from the

database

Authenticated client,
proceed with communication

Figure 4.8: Flowchart describing how a MQTT client is authenticated by the MQTT broker.

Figure 4.9 describes how a client’s request is authorized using this plugin. Since the client

is already authenticated, Mosquitto proceeds by sending an authorization request for that

client to the plugin. The plugin requests the list of permissions associated with the client

role, and then checks if any permission on that list explicitly grants PUBLISH access to the

topic.

68

Authenticated client publishes
a message on topic:

"smartbox/1/temperature"

Unauthorized request,
dismiss the publish request

Mosquitto

Plugin

No

Yes

Does the
list of permissions

contain any permission
with PUBLISH access
for the topic "smartbox

/1/temperature"?

Plugin requests list of
permissions associated
with the client role from

the database

Authorized request,
proceed with the publish

request

Mosquitto triggers an
authorization event

Figure 4.9: Flowchart describing how an authenticated MQTT client’s request is authorized

by the MQTT broker.

4.4 Data pre-processing

The Data pre-processing service is used to process the incoming data from the Smart boxes

in real-time. It subscribes to incoming MQTT messages using a MQTT client with superuser

privileges, that grants access to all topics. It validates the MQTT messages according to the

message formats specified in Section 4.3.1, filters any irrelevant information, and stores it in

the database. Currently, it does not apply any data analytics to detect critical conditions.

The code for the service can be found here26.

Figure 4.10 shows how incoming data is processed by the service.
26https://github.com/WoW-Institute-of-Systems-and-Robotics/gateway_pyservice

69

https://github.com/WoW-Institute-of-Systems-and-Robotics/gateway_pyservice

MQTT broker sends a
message to the Data pre-

processing service

No

Yes

Is the
message well

formatted according to
its "message_type"

field?

Data pre-processing service

Message is valid, store it in
database

Message is not valid, reject
message

Extract sensor measurement
data from the message

Figure 4.10: Flowchart describing how incoming MQTT messages are processed by the data

pre-processing service.

4.5 HIS FHIR Integration

The HIS FHIR Integration service is used to manage the communication to and from Glob-

alCare HIS. The service must have a FHIR HTTP server [51] capable of handling requests

from the HIS, as well as transform the sensor measurement data into FHIR messages and

communicate it to the HIS.

Out of the open-source implementations of the FHIR specification available27, the HAPI

FHIR Java library [54] is one of the longest supported FHIR implementations, with over 18

years of active development. The project is backed and maintained by Smile CDR28, a health

technology company with a long-standing reputation in the health IT field. The HAPI FHIR

library also provides a simple and intuitive API to interact with FHIR resources [51], the

objects used to represent any data in the protocol, handling all data parsing or serialization

of data into FHIR resources and vice versa.

For these reasons HAPI FHIR Java library has been used to implement the FHIR server.

The software library provides several mechanisms to build FHIR HTTP servers. Although

other models are available, the Plain Server model [54] has been used to develop the FHIR

server since it just provides the bare-bones structure to build the API, and not a full-fledged
27https://confluence.hl7.org/pages/viewpage.action?pageId=35718838
28https://www.smilecdr.com

70

https://confluence.hl7.org/pages/viewpage.action?pageId=35718838
https://www.smilecdr.com

implementation with its own storage and functionality implemented, making it very flexible

to work with. Using this model requires only the implementation of how the FHIR resource

interactions translate to interactions with the data storage solution to create our own FHIR

server, while the HAPI FHIR handles all the HTTP processing, as well as parsing and

serialization of data into FHIR resources. Even though FHIR supports both Extensible

Markup Language (XML) and JavaScript Object Notation (JSON) data formats, only the

JSON data format is used for representing the FHIR resources in the FHIR server.

The HAPI FHIR Plain Server implementation is based on Java Servlet 3.1 API29. Servlets

are applications that are hosted on web servers, used to extend their capabilities. This means

that in order to have a functional FHIR server, a web server capable of hosting the HAPI

FHIR Plain Server servlet is required. Since Eclipse Jetty930 is the web server used on the

HAPI FHIR documentation, and is a relatively popular server (being used by Facebook,

Google, Yahoo, etc.), it has been chosen for the development of the HIS FHIR Integration

service. The code for the service can be found here31.

In order to prepare the system for deployment in the first hospital trials, the develop-

ment team has decided to use a pre-defined list of the subscriptions which remains static

for the duration of the execution of the service. Additionally, the authentication protocol

used on the FHIR communication is Basic Authentication (using a static username and

password), instead of the more secure option – OAuth2 32 – that was originally planned for

implementation.

4.5.1 FHIR Server

The servlet is composed by three major components:

• “Resource Providers” – defines the interactions with the FHIR resources over HTTP

which are supported by our FHIR server. It also invokes the CRUD operations (create,

read, update and delete) over our arbitrary data store through the “Database Handler”.

• “Database Handler” – defines how the FHIR server connects to the data storage solu-

tion, which implements and exposes the methods used by the “Resource Providers” to
29https://docs.oracle.com/javaee/7/tutorial/servlets.htm
30https://www.eclipse.org/jetty/
31https://github.com/WoW-Institute-of-Systems-and-Robotics/gateway_fhir_server/
32https://oauth.net/2/

71

https://docs.oracle.com/javaee/7/tutorial/servlets.htm
https://www.eclipse.org/jetty/
https://github.com/WoW-Institute-of-Systems-and-Robotics/gateway_fhir_server/
https://oauth.net/2/

interact with the data. This component is also responsible for translating the data as

it is stored in the data storage solution into valid FHIR resources and vice versa.

• “Subscription Handler” – handles the scheduling and transmission of sensor data to

the HIS using FHIR Observations [51].

The Resource Providers define how and what resources are supported by the FHIR server.

Currently, the only interaction that is implemented is a read operation [51] on FHIR Device

resources [51]. FHIR Devices are the resources used to represent the Smart box and Biosticker

sensors. Figure 4.11 shows how this interaction is processed by the FHIR server.

HAPI Plain
Server GlobalCare HISResource

Provider
Database
Handler

PostgreSQL
Database

GET "/Device/1"

Returns device found
(SmartBox or sensor)

Parses the HTTP request
into FHIR data and

redirects it to Resource
Provider

Executes stored
procedure to search for a

SmartBox with ID = 1

OK 200

Executes stored
procedure to search for a

sensor with ID = 1

(If the previous request fails to return
data)

Sends a request to retrieve
information about FHIR

Device with ID=1

Transforms the raw data
into a FHIR Device

Returns the FHIR Device

Serializes the FHIR
resource and generates

the HTTP response

Figure 4.11: Sequence diagram describing the read interaction on FHIR Device resource.

Although this is describing an interaction on the Device resources, the sequence diagram of

a read interaction on any other FHIR resource should be very similar to this one.

As mentioned, the FHIR Device resource is used to represent both the Smart box and the

Biosticker sensors in the FHIR protocol. To distinguish if a Device resource is a sensor or

is a Smart box, the resource uses the field “Device.identifier” to report the device’s UUID,

and the field “Device.type” to describe the type of device using codes from an international

72

health code-set33. Additionally, sensors are considered “child” Devices that must always

have a parent Device associated to them. This means Device resources for sensors define the

field “Device.parent”, which must contain a reference to a Smart box. The reader is referred

to Appendix B for the JSON representation of the FHIR resource for the Smart box and for

a sensor.

The reader is referred to Appendix B for the JSON representations of the FHIR resources

exchanged with the HIS.

The Subscription Handler is the component responsible for handling data subscription

requests from the HIS. To set up the subscriptions, after the FHIR server initializes, the

Subscription Handler sends a request to the Database Handler to retrieve the list of all

active subscriptions. It then schedules tasks using the Quartz Scheduler library34 according

to the information specified in the subscription data, in order to trigger notification events

periodically, as seen in Figure 4.12.

The process is triggered by the Scheduler when there is a scheduled notification task at that

given time. The FHIR server parses the sensor data into its FHIR representation, the FHIR

Observation resource, and then bundles it, using Bundle resource [51], with the FHIR Device

resources of the sensor and Smart box associated to that sensor. This is necessary because

the “Interoperability” layer on the GlobalCare HIS does not hold information regarding the

associations between the sensors and the Smart box, and the associations with patients are

performed in regard to the Smart box, not the sensor. Instead, it relies on the Smart Gateway

to send that data, along with the measurement to properly process it.

33https://www.snomed.org
34http://www.quartz-scheduler.org/

73

https://www.snomed.org
http://www.quartz-scheduler.org/

GlobalCare HISSubscription
Handler

Database
Handler

PostgreSQL
Database

Returns latest
measurement data

Executes stored
procedure to retrieve the

latest measurement
associated with the sensor

with ID=1

OK 200

Sends a request to retrieve
the latest measurement

associated with the sensor
with ID=1

Transforms the raw data
into a FHIR Observation

Waiting for next notification
task to be triggered

Step 1: The FHIR Server is initialized

Creates a Bundle
resource from the

Observation,
sensor and

SmartBox Device
resources (Sends the FHIR Bundle to the base

URL of the HIS FHIR server)

POST "/"

Waiting for next notification
task to be triggered

Figure 4.12: Sequence diagram describing the communication of sensor data to the HIS.

4.6 Summary

In this chapter, the different components which form the Smart Gateway are presented.

Next, the performance of the proposed solution is evaluated through a hospital trial and

controlled lab tests.

74

5 Experimental Validation

After developing and analyzing the different IoT system components, it is time to evaluate

its overall performance in a real-world scenario. In this chapter, the results of the trials

performed on the overall IoT system are presented and discussed.

5.1 Hospital Pilot

For the hospital trial, the proposed IoT system has been deployed in a clinical facility

within Centro Hospitalar e Universitário de Coimbra (CHUC), during which two volunteers

have been continuously monitored using the system. A Smart box, one Biosticker and one

oximeter are assigned to each volunteer for the duration of the trial. The oximeter is attached

to the patient’s right-hand index finger recording pulse oximeter data and the Biosticker is

attached to the patient’s chest recording the other biosignals (body temperature, ECG,

etc., as discussed in Section 3). The patients remained in bed for the entirety of the trial,

always keeping the Smart box at most 5 meters away from the patient, as shown in Figure

5.1. The Wi-Fi network used to connect the Smart box to the Smart Gateway has been

provided by the hospital IT, and is also being used concurrently by the researchers during

the study. Additionally, each device is assigned a fixed IP to facilitate the deployment of

the infrastructure, and ensure the devices are able to communicate with one another at all

times.

The acquisition rates of the sensors are as defined in Section 3. As mentioned in the

previous chapter, for this first trial, the subscription rates for the FHIR communications

have been previously established, corresponding to 1 minute intervals for all sensors, i.e. the

latest measurement of each biosignal is communicated every minute to the HIS.

75

Smart box

Smart Gateway

Pulse Oximeter

Biosticker

GUI

Figure 5.1: Conceptual illustration of the system components within a medical facility.

In this trial, the objective is to evaluate the stability and reliability of the entire infras-

tructure in a real-world scenario. To this end, the bandwidth used by the MQTT and FHIR

communication protocols are analyzed to evaluate the reliability of the system, in order to

check for interruptions of the communication and observe if there are any issues with the

communication; and the system resource usage (CPU and RAM) is also monitored to evalu-

ate the system’s stability. To evaluate the performance of the proposed system, the following

performance metrics were defined and measured throughout the tests:

• MQTT bandwidth – Rate of data exchanged between all Smart boxes and Smart Gate-

way;

• FHIR bandwidth – Rate of data exchanged between the Smart Gateway and HIS;

• Resource usage of Gateway services – CPU and RAM usage of each Gateway service;

In the next section, 2 hours of continuous monitorization tests are analyzed and discussed.

5.1.1 Results and Discussion

Figure 5.2 shows a boxplot of the MQTT payload sizes for each type of biosignal message.

The deviation in the payload lengths is caused by variations of the number of digits in

the numeric entries sent in the messages (e.g. acceleration or gyroscope values in the IMU),

which should result in using more or less characters when the data is serialized into the JSON

76

payloads sent to the MQTT broker. For the heart rate, respiration rate and pulse oximetry

messages, due to the nature of these biosignals the number of digits does not change, so the

payload size remains constant throughout the tests. Taking this information into account,

together with the acquisition rate for each biosignal as defined in Section 3, the estimated

bandwidth is expected to be close to 175.7± 0.2 kbps.

ECG IMU Heart Rate SpO2 Respiration Temperature

160

180

200

220

240

260

280

300

Pa
yl

oa
d

Le
ng

th
 (b

yt
es

)

Figure 5.2: MQTT payload sizes measured for each type of biosignal sensor message during

the hospital trial.

The following graphs have been obtained using the data collected in the hospital trial

using 2 Smart boxes and 1 Smart Gateway. Figure 5.3 and 5.4 show the measured MQTT and

FHIR bandwidth respectively, averaged over 1 min. Figure 5.5 and 5.6 show the measured

CPU and RAM usage.

00 01 02
Time Elapsed (Hours)

80

90

100

110

120

130

140

Av
er

ag
e

Ba
nd

wi
dt

h
(k

bp
s)

Figure 5.3: Average MQTT bandwidth usage

measured over time during the hospital trial.

00 01 02
Time Elapsed (Hours)

1.6

1.7

1.8

1.9

2.0

2.1

Av
er

ag
e

Ba
nd

wi
dt

h
(k

bp
s)

Figure 5.4: Average FHIR bandwidth usage

measured over time during the hospital trial.

77

Yet, the measured bandwidth data is very different from the abovementioned value –

with an average value of 124.1 ± 12.8 kbps. Not only it is ∼30% lower than the estimated

value, the bandwidth results are very sparse as seen by the standard deviation of 12.8 kbps,

which corresponds roughly to 10 messages per second. Despite our efforts, it is not possible

to determine the exact nature of this deviation since there are no records of the MQTT

transmissions on the Smart box side.

There are several factors which influence the MQTT bandwidth, any of which (or com-

bination of which) could be causing this issue:

• The custom Mosquitto plugin intercepts messages to authenticate and validate the

Smart boxes. This introduces an additional processing delay that could impact the

measured bandwidth.

• The Smart boxes continuously receive data from the Biostickers, so any interruption on

the communication between these devices inevitably would reduce the amount of mes-

sages sent. During the hospital trial, numerous BLE connection issues were reported,

so this is likely one of the main causes for the observed variance.

• Since the Smart boxes are connected using Wi-Fi, and since the network was being

actively used by researchers throughout the trials, there could be fluctuations in the

transmission of the data caused by network constraints. This could contribute to the

issue at hand, but should not be significant enough to take into account.

Due to these irregularities, the FHIR bandwidth is impacted, as seen in Figure 5.4. The

graph shows the data arranged in different “levels”, each corresponding to the successful

transmission of a certain amount of messages. These levels are discretized as the subscrip-

tions are only triggered once a minute. In this case, the maximum level (at ∼2.16 kbps)

corresponds to sending all messages in that minute, ∼1.92 kbps when one message is not

sent in that minute, and ∼1.6 kbps when two messages are not sent instead. The messages

are not being sent because there is no new information in the data storage, which may be

caused by the issues previously referred. Additionally, all messages sent by the Smart Gate-

way to GlobalCare HIS have been confirmed on the HIS side as well, thus validating the

FHIR service developed.

Regarding CPU and RAM usage, it is observed to be very low across all services running

on the Smart Gateway (the hardware specification can be found on Table 4.1) with less

78

than 10% CPU usage and 2% RAM usage overall, meaning that the service architecture is

fairly efficient. This also provides ample resources for deploying additional analytics services

locally, instead of relying on cloud services.

MQTT Broker FHIR Server Data pre-processing Data storage
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

CP
U

Us
ag

e
(%

)

Figure 5.5: CPU usage of each Smart

Gateway service measured over time dur-

ing the hospital trial.

MQTT Broker FHIR Server Data pre-processing Data storage
0.0

0.2

0.4

0.6

0.8

RA
M

 U
sa

ge
 (%

)

Figure 5.6: RAM usage of each Smart

Gateway service measured over time dur-

ing the hospital trial.

When analyzing the data of the trial, the latency values for each Smart box were observed

to be significantly different from one another. This was later determined to have been

caused by clock drift35, as the service used to maintain the system clock updated (which

is the default service that is pre-installed in Ubuntu) could not provide sufficient precision

when using public Network Time Protocol (NTP) servers. To solve this, a different strategy

is required: the Smart boxes must periodically synchronize the system clock directly with

the Smart Gateway, and the Smart Gateway synchronizes its clock with a pool of NTP

servers. This minimizes the differences between the system clocks of the Smart Gateway

and the Smart boxes, significantly improving the precision of the timestamps (from ∼100 ms

to ∼10 µs). To implement this, a NTP server has been installed in the Smart Gateway as

well as a high performance NTP client in both the Smart Gateway and Smart boxes.

Due to all the aforementioned issues, it is not possible to fully assess the performance of the

overall system. As such, additional tests in a controlled environment have been performed to

overcome the weaknesses of the initial experiments. These are discussed in the next section.
35https://ubuntu.com/server/docs/network-ntp

79

5.2 Laboratory Tests

As mentioned, due to the sparsity of the results obtained in the hospital trial, additional

tests in a controlled environment have been performed to fully assess the potential of the

system.

The tests have been formulated based on the results of the hospital trial, also using 2 Smart

boxes and 1 Smart Gateway. Since there were BLE connection issues on the Smart box re-

ported throughout the hospital trial, for these tests the Smart boxes generate simulated data

to send via MQTT, i.e. we remove the uncertainty derived from the Bluetooth acquisition

issues from the Biostickers to the Smart boxes. In these tests, the focus is the evaluation of

MQTT data transmission, thus the FHIR server was not used for these tests. Additionally, to

determine if the usage of the custom Mosquitto plugin is causing the aforementioned issues,

tests have been performed with and without using the authentication plugin. These tests

were performed within ISR facilities, so the network infrastructure was already provided by

the IT staff. Once again, all devices had static IP addresses to facilitate the deployment and

troubleshooting of communication failures.

To assess the performance of the proposed system, the performance metrics defined in the

hospital tests were used once more – MQTT bandwidth, CPU and RAM resource usage –

as well as:

• MQTT packet loss – Loss of data observed.

• MQTT latency – Interval of time between the data collection at each Smart box and

the reception of data in the Smart Gateway.

5.2.1 Results and Discussion

The following graphs have been obtained using the data collected in the laboratory tests

using 2 Smart boxes and 1 Smart Gateway. Figure 5.7 and 5.8 show the measured MQTT

bandwidth and latency respectively, averaged over 1 minute.

80

00 01 02 03 04 05 06 07 08 09 10 11 12
Time Elapsed (Hours)

158

160

162

164

166

168
Av

er
ag

e
Ba

nd
wi

dt
h

(k
bp

s) With plugin
Without plugin

Figure 5.7: Average MQTT bandwidth usage

measured over time during the lab tests.

00 01 02 03 04 05 06 07 08 09 10 11
Time Elapsed (Hours)

0

50

100

150

200

Av
er

ag
e

La
te

nc
y

M
ea

su
re

d
(m

s)

With plugin
Without plugin

Figure 5.8: Average MQTT latency measured

over time during the lab tests.

As seen in the graphs, the MQTT bandwidth is much higher than the value observed

in the hospital trials, but still somewhat below the expected value (175.68 kbps). This is

because the delay caused by the MQTT transmission itself was not accounted for, reducing

the transmission rate of the simulated sensors very slightly, which translates into a minor

difference in the overall MQTT bandwidth. Nonetheless, it displays much better results with

an average bandwidth of 162.6±0.5 kbps using the plugin and 162.5±0.4 kbps without using

the plugin. Despite this final result seemingly favoring the usage of the plugin, it should be

noted that the difference between these values is not statistically significant, and thus can

be safely disregarded. It means however that the usage of the plugin does not meaningfully

impact the performance of the MQTT communications, while also providing authentication

and authorization features to the broker.

One thing to note is that the average latency does show a significant increase (13.22±14.07

ms when using the plugin to 7.86± 0.98 ms without it), which is expected since the plugin

adds a fixed processing delay caused by the requests to the data storage service. However,

the latency obtained using the plugin seems to be very sparse (as seen with a standard

deviation larger than the latency value itself), which would indicate some sort of data loss,

but this is not the case. A full analysis revealed that 100% of the data generated by the

Smart boxes in this test was captured by the Smart Gateway. This means that this delay is

being compensated somehow, or that is caused by something else, for example, an issue with

the recently introduced NTP server, and so it should be researched further. One thing is

clear however, and that is that the data is being successfully transmitted and received using

MQTT.

81

Figure 5.9, 5.10, 5.11 and 5.12 show the measured RAM and CPU usage, with and without

the custom authentication plugin. These values are consistent with those observed in the

hospital trials. It is observed that the CPU usage of the data storage nearly doubles when

using the plugin, which is expected since the plugin performs requests to the data storage

whenever a message is received, effectively doubling the amount of requests performed on

the data storage – one request on the plugin to check if the Smart box is authorized, one

request on the data pre-processing service to store the received data.

MQTT Broker Data pre-processing Data storage
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RA
M

 U
sa

ge
 (%

)

Figure 5.9: Average RAM usage of each

Smart Gateway service measured over

time during the lab tests, when using the

custom plugin for Mosquitto.

MQTT Broker Data pre-processing Data storage
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RA
M

 U
sa

ge
 (%

)

Figure 5.10: Average RAM usage of each

Smart Gateway service measured over

time during the lab tests, without using

the custom plugin for Mosquitto.

MQTT Broker Data pre-processing Data storage
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

CP
U

Us
ag

e
(%

)

Figure 5.11: Average CPU usage of each

Smart Gateway service measured over

time during the lab tests, when using the

custom plugin for Mosquitto.

MQTT Broker Data pre-processing Data storage

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CP
U

Us
ag

e
(%

)

Figure 5.12: Average CPU usage of each

Smart Gateway service measured over

time, without using the custom plugin for

Mosquitto.

Overall, the results reported are extremely positive, demonstrating the performance of

the system developed throughout this past year, for example, as seen in Figure 5.13, where

the sensor measurements sent by the Smart Gateway can be observed on the GlobalCare

82

HIS user interface. However, certain phenomena should be researched further, for example

the observed latency deviations on MQTT communications, but nonetheless, the developed

architecture should provide a solid foundation for the ongoing development of the WoW

project.

Figure 5.13: Image of the GlobalCare HIS user interface showing measurements sent by the

Smart Gateway.

5.3 Summary

In this chapter, the performance of the proposed system has been experimentally evaluated

and discussed. In the next, and final chapter, an overview of the work achieved is presented

in light of the proposed contributions, concluding with some final remarks.

83

6 Conclusion

In this dissertation, a new IoT architecture for a pervasive healthcare application of long-term

wireless biomonitoring of patients has been proposed and implemented. The work includes

an extensive study of BLE communication and a hardware evaluation of different SBCs to

support the decision of which IoT hardware platforms would be used in the WoW project.

This work also evaluates the performance of two BLE adapters, identifying issues with the

BLE stack implementation on Linux and their significance to the community. Additionally,

a MQTT specification using standardized data formats and security protocols, as well as

an extensive service architecture within the Smart Gateway, has been proposed, promoting

security and interoperability in healthcare IT systems by using an API built with the open

standard FHIR to integrate the data in an existing HIS.

Due to external causes, the performance could not be fully evaluated within a trial in

clinical facilities, but valuable insight was obtained from it. To overcome the weaknesses

of the preliminary tests, results in a controlled lab scenario were extracted for further eval-

uation. These tests were very promising, showing how the system is more than capable

of handling the communications bandwidths required for the project while remaining ex-

tremely secure and scalable, thus demonstrating the current capabilities and potential of the

proposed solution.

As a result of the developed work and its contributions to the WoW project, an article [55]

has been co-written and submitted to the Internet of Things journal published by Elsevier,

pending review at the time of writing.

6.1 Future Work

To further improve the current work, some open issues of the proposed solutions could be

tackled. The proposed MQTT specification does not implement any redundancy mechanisms

84

exchanging data after interruptions in the communication, e.g. network failures, which are

required to make the system more robust. Additionally, as mentioned previously, the Data

pre-processing service does not implement analytics to detect critical conditions. This would

improve significantly the appeal of the system, as it would be capable of providing insight

into the patients’ conditions in real-time, e.g. detecting the eminence of heart attacks or fall

events, triggering an immediate alert to healthcare providers. Moreover, the FHIR server

currently does not support the creation or modification of subscriptions using the HTTP

API as it was not considered for the first trial. However, this should be included in the

planning for the final stage of the project.

85

Bibliography

[1] K. V. den Heede, N. Bouckaert, and C. V. de Voorde, “The impact of an ageing popula-

tion on the required hospital capacity: results from forecast analysis on administrative

data,” vol. 10, no. 5, pp. 697–705, Jul. 2019.

[2] A. Redondi, M. Chirico, L. Borsani, M. Cesana, and M. Tagliasacchi, “An integrated

system based on wireless sensor networks for patient monitoring, localization and track-

ing,” Ad Hoc Networks, vol. 11, no. 1, pp. 39–53, jan 2013.

[3] European Union, “EU4Health,” 2021. [Online]. Available: https://ec.europa.eu/health/

[4] World Health Organization, Global Strategy on Digital Health, 2020, vol. 57, no. 4.

[5] J. R. C. Faria, “Estruturação de Sistemas e Aplicações de IIoT em Redes Elétricas

Inteligentes,” Ph.D. dissertation, University of Coimbra, 2020.

[6] S. Shoja and A. Jalali, “A study of the Internet of Things in the oil and gas indus-

try,” 2017 IEEE 4th International Conference on Knowledge-Based Engineering and

Innovation, KBEI 2017, vol. 2018-Janua, pp. 230–236, 2018.

[7] N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of things,” Scientific Amer-

ican, vol. 291, no. 4, pp. 76–81, 2004.

[8] A. Darwish and A. E. Hassanien, “Wearable and implantable wireless sensor network

solutions for healthcare monitoring,” Sensors, vol. 11, no. 6, pp. 5561–5595, 2011.

[9] F. Dursun Ergezen and E. Kol, “Nurses’ responses to monitor alarms in an intensive

care unit: An observational study,” Intensive and Critical Care Nursing, vol. 59, p.

102845, 2020.

[10] A. F. Silva and M. Tavakoli, “Domiciliary hospitalization through wearable biomoni-

toring patches: Recent advances, technical challenges, and the relation to covid-19,”

Sensors (Switzerland), vol. 20, no. 23, pp. 1–35, 2020.

86

https://ec.europa.eu/health/

[11] J. Stapleton, DSDM, dynamic systems development method: the method in practice.

Cambridge University Press, 1997.

[12] G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and Health: Internet of

Things, Big Data, and Cloud Computing for Healthcare 4.0,” Journal of Industrial

Information Integration, vol. 18, no. February, p. 100129, 2020. [Online]. Available:

https://doi.org/10.1016/j.jii.2020.100129

[13] S. B. Baker, W. Xiang, and I. Atkinson, “Internet of Things for Smart Healthcare:

Technologies, Challenges, and Opportunities,” IEEE Access, vol. 5, pp. 26 521–26 544,

2017.

[14] C. Doukas and I. Maglogiannis, “Bringing IoT and Cloud Computing towards

Pervasive Healthcare,” in 2012 Sixth International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing. IEEE, jul 2012, pp. 922–926. [Online].

Available: http://ieeexplore.ieee.org/document/6296978/

[15] T. Wu, F. Wu, C. Qiu, J. M. Redoute, and M. R. Yuce, “A Rigid-Flex Wearable Health

Monitoring Sensor Patch for IoT-Connected Healthcare Applications,” IEEE Internet

of Things Journal, vol. 7, no. 8, pp. 6932–6945, 2020.

[16] Yuan Jie Fan, Yue Hong Yin, Li Da Xu, Yan Zeng, and Fan Wu, “IoT-Based Smart

Rehabilitation System,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2,

pp. 1568–1577, may 2014.

[17] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi,

and L. Tarricone, “An IoT-Aware Architecture for Smart Healthcare Systems,” IEEE

Internet of Things Journal, vol. 2, no. 6, pp. 515–526, dec 2015.

[18] T. Adame, A. Bel, A. Carreras, J. Melià-Seguí, M. Oliver, and R. Pous, “CUIDATS:

An RFID–WSN hybrid monitoring system for smart health care environments,” Future

Generation Computer Systems, vol. 78, pp. 602–615, jan 2018.

[19] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor AI: Predict-

ing Clinical Events via Recurrent Neural Networks.” JMLR workshop and conference

proceedings, vol. 56, pp. 301–318, 2016.

[20] Cisco, “The Internet of Things Reference Model,” 2014. [Online]. Available: http://cdn.

iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

87

https://doi.org/10.1016/j.jii.2020.100129
http://ieeexplore.ieee.org/document/6296978/
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

[21] F. Wu, T. Wu, and M. R. Yuce, “Design and Implementation of a Wearable Sensor

Network System for IoT-Connected Safety and Health Applications,” in 2019 IEEE 5th

World Forum on Internet of Things (WF-IoT). IEEE, apr 2019, pp. 87–90.

[22] L. Minh Dang, M. J. Piran, D. Han, K. Min, and H. Moon, “A survey on internet of

things and cloud computing for healthcare,” Electronics (Switzerland), vol. 8, no. 7, pp.

1–49, 2019.

[23] P. Gope and T. Hwang, “BSN-Care: A Secure IoT-Based Modern Healthcare System

Using Body Sensor Network,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1368–1376,

2016.

[24] D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry, IoT Fundamentals:

Networking Technologies, Protocols, and Use Cases for the Internet of Things, 1st ed.

Cisco Press, 2017.

[25] P. Fuhrer and D. Guinard, “Building a smart hospital using RFID technologies,” Euro-

pean Conference on eHealth 2006, Proceedings of the ECEH 2006, pp. 131–142, 2006.

[26] EPCglobal, “Specification for RFID Air Interface EPC ™ Radio-Frequency Identity

Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz

– 960 MHz,” Intellectual Property, no. October, 2006.

[27] A. Dementyev, S. Hodges, S. Taylor, and J. Smith, “Power Consumption Analysis of

Bluetooth Low Energy, ZigBee, and ANT Sensor Nodes in a Cyclic Sleep Scenario,” in

Proceedings of IEEE International Wireless Symposium (IWS). IEEE, 2013.

[28] J. N. S. Rubí and P. R. L. Gondim, “IoMT platform for pervasive healthcare data ag-

gregation, processing, and sharing based on oneM2M and openEHR,” Sensors (Switzer-

land), vol. 19, no. 19, pp. 1–25, 2019.

[29] RedHat, “Cloud Computing - IaaS vs PaaS vs SaaS.” [Online]. Available:

https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas

[30] A. F. Subahi, “Edge-Based IoT Medical Record System: Requirements, Recommenda-

tions and Conceptual Design,” IEEE Access, vol. 7, pp. 94 150–94 159, 2019.

[31] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, “Ubiquitous data accessing method

in iot-based information system for emergency medical services,” IEEE Transactions on

Industrial Informatics, vol. 10, no. 2, pp. 1578–1586, 2014.

88

https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas

[32] IBM, “Application Programming Interface (API).” [Online]. Available: https:

//www.ibm.com/cloud/learn/api

[33] HL7, “FHIR v4.0.1,” 2019. [Online]. Available: https://www.hl7.org/fhir/

[34] C. Peng and P. Goswami, “Meaningful integration of data from heterogeneous health

services and home environment based on ontology,” Sensors (Switzerland), vol. 19, no. 8,

2019.

[35] J. Gruendner, T. Schwachhofer, P. Sippl, N. Wolf, M. Erpenbeck, C. Gulden, L. A.

Kapsner, J. Zierk, S. Mate, M. Stürzl, R. Croner, H. U. Prokosch, and D. Toddenroth,

“Ketos: Clinical decision support and machine learning as a service – A training and

deployment platform based on Docker, OMOP-CDM, and FHIR Web Services,” PLoS

ONE, vol. 14, no. 10, pp. 1–16, 2019.

[36] K. B. Wagholikar, J. C. Mandel, J. G. Klann, N. Wattanasin, M. Mendis, C. G. Chute,

K. D. Mandl, and S. N. Murphy, “SMART-on-FHIR implemented over i2b2,” Journal

of the American Medical Informatics Association : JAMIA, vol. 24, no. 2, pp. 398–402,

2017.

[37] A. Raposo, L. Marques, R. Correia, F. Melo, J. Valente, T. Pereira, L. B. Rosário,

F. Froes, J. Sanches, and H. P. da Silva, “E-covig: A novel mhealth system for remote

monitoring of symptoms in covid-19,” Sensors, vol. 21, no. 10, pp. 1–18, 2021.

[38] “Transport layer security protocol version 1.3.” [Online]. Available: https:

//tools.ietf.org/html/rfc8446

[39] Personal Connected Health Alliance, “Continua Adoption Playbook Deploying

Interoperable Connected Health in Your Health System,” no. May, p. 20, 2017.

[Online]. Available: https://www.pchalliance.org/continua-adoption-playbook

[40] R. Jain, “Introduction to raspberry pi,” in Advanced Home Automation Using Raspberry

Pi. Springer, 2021, pp. 1–22.

[41] J. C. Pierce, “The fibonacci series,” The Scientific Monthly, vol. 73, no. 4, pp. 224–228,

1951.

[42] H. J. Jeffrey, “Chaos game visualization of sequences,” Computers and Graphics, vol. 16,

no. 1, pp. 25–33, 1992.

89

https://www.ibm.com/cloud/learn/api
https://www.ibm.com/cloud/learn/api
https://www.hl7.org/fhir/
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://www.pchalliance.org/continua-adoption-playbook

[43] D. P. Playne, M. G. B. Johnson, and K. A. Hawick, “Benchmarking GPU Devices

with N-Body Simulations,” Proc. 2009 International Conference on Computer Design

(CDES 09) July, Las Vegas, USA., pp. 150–156, 2009.

[44] B. Specification, “Bluetooth ®Specification Bluetooth Core Specification,” 1999.

[Online]. Available: https://www.bluetooth.com/specifications/adopted-specifications

[45] Z. K. Farej and A. M. Saeed, “Analysis and Performance Evaluation of Bluetooth Low

Energy Piconet Network,” OALib, vol. 07, no. 10, pp. 1–11, 2020.

[46] “Bluez.” [Online]. Available: https://www.bluez.org/

[47] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low energy:

An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753,

2012. [Online]. Available: https://www.mdpi.com/1424-8220/12/9/11734

[48] K. Wright and H. Kang, “Performance analysis of various mechanisms for inter-process

communication,” Operating Systems and Networks Lab, Dept. of . . . , 2007.

[49] C. Asiminidis, G. Kokkonis, and S. Kontogiannis, “Database systems performance

evaluation for IoT applications,” 2018. [Online]. Available: https://doi.org/10.2139/

ssrn.3360886

[50] “Db-engines monthly popularity ranking.” [Online]. Available: https://db-engines.com/

en/ranking

[51] “Hl7 fhir r4 specification,” accessed in 10-December-2021. [Online]. Available:

https://www.hl7.org/fhir/

[52] J. Clarke, SQL injection attacks and defense. Waltham, Mass: Elsevier, 2012.

[53] “Eclipse mosquitto - an open source mqtt broker,” accessed in 10-December-2021.

[Online]. Available: https://mosquitto.org/documentation/

[54] “Hapi fhir - java api for hl7 fhir clients and servers,” accessed in 10-December-2021.

[Online]. Available: https://hapifhir.io/

[55] F. Famá, J. Faria, D. Portugal, “An IoT-based Interoperable Architecture for Wire-

less Patient Biomonitoring and Digital Healthcare,” Internet of Things, Elsevier, 2021,

(Under Review).

90

https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluez.org/
https://www.mdpi.com/1424-8220/12/9/11734
https://doi.org/10.2139/ssrn.3360886
https://doi.org/10.2139/ssrn.3360886
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.hl7.org/fhir/
https://mosquitto.org/documentation/
https://hapifhir.io/

Appendix A

MQTT Payload Formats

In the implemented system, the field message_type defines what type of message is commu-

nicated, and must be one of the following:

• “MEASUREMENT_TEMPERATURE”: The payload format for this message is:

1 " payload ": {

2 " temperature " : 10.0,

3 " is_celsius " : true

4 }

5

where the “temperature” field is the temperature measurement, and “is_celsius” field

indicates whether the measurement value it is in Celsius or Fahrenheit.

• “MEASUREMENT_IMU”: The payload format for this message is:

1 " payload ": {

2 "imu": {

3 " linear_acceleration ": {"x": 0.00, "y": 0.00, "z": 0

↪→ .00},

4 " angular_velocity ": {"x": 0.00, "y": 0.00, "z": 0.00}

5 }

6 " pose_description " : " SITTING "

7 }

8

where the “linear_acceleration” field is the accelerometer measurement,“angular_velocity”

field is the gyroscope measurement, and “pose_description” is the text description of

91

the current body pose of the patient.

• “MEASUREMENT_ECG”: The payload format for this message is:

1 " payload ": {

2 "ecg" : 10

3 }

4

where the “ecg” field is the ECG measurement.

• “MEASUREMENT_PULSEOXIMETRY”: The payload format for this message is:

1 " payload ": {

2 "spo2" : 10.0

3 }

4

where the “spo2” field is the pulse oximetry measurement.

• “MEASUREMENT_HR”: The payload format for this message is:

1 " payload ": {

2 "bpm" : 10.0

3 }

4

where the “bpm” field is the heart rate measurement.

• “MEASUREMENT_RESPIRATION”: The payload format for this message is:

1 " payload ": {

2 " respiration " : 10.0

3 }

4

where the “respiration” field is the respiration rate measurement.

92

Appendix B

FHIR Resource JSON Representations

In the implemented system, different FHIR Resources are used to exchange information

with the HIS using JSON representations. Some examples are shown below:

• FHIR resource for the Smart box :

1 {

2 " resourceType ": " Device ",

3 " identifier ": [

4 {

5 " system ": "urn:ietf:rfc :3986",

6 "value":

↪→ "urn:uuid :61 ebe359 -bfdc -4613 -8 bf2 - c5e300945f0a "

7 }

8],

9 "type": {

10 " coding ": [

11 {

12 " system ": "http :// snomed .info/sct",

13 "code": " 5159002 ",

14 " display ": " Physiologic monitoring system "

15 }

16],

17 "text": " Smartbox "

18 }

19 }

20

93

• FHIR resource for a temperature sensor, for other sensors a different code must be

used in the “code” entry:

1 {

2 " resourceType ": " Device ",

3 " identifier ": [

4 {

5 " system ": "urn:ietf:rfc :3986",

6 "value":

↪→ "urn:uuid :88 f151c0 -a954 -468a -88bd -5 ae15c08e059 "

7 }

8],

9 "type": {

10 " coding ": [

11 {

12 " system ": "http :// snomed .info/sct",

13 "code": " 27991004 ",

14 " display ": " Thermometer "

15 }

16],

17 "text": " Thermometer "

18 },

19 " parent ": {

20 " reference ":

↪→ "urn:uuid :61 ebe359 -bfdc -4613 -8 bf2 - c5e300945f0a "

21 }

22 }

23

• FHIR resource for temperature measurement, for different measurements a different

code must be used in the “code” entry:

1 {

2 " resourceType ": " Observation ",

3 " status ": "final",

4 " category ": [

5 {

94

6 " coding ": [

7 {

8 " system ":

↪→ "http :// terminology .hl7.org/ CodeSystem / observation - category ",

9 "code": "vital -signs",

10 " display ": "Vital Signs"

11 }

12]

13 }

14],

15 "code": {

16 " coding ": [

17 {

18 " system ": "http :// loinc.org",

19 "code": "8310 -5",

20 " display ": "Body temperature "

21 }

22]

23 },

24 " bodySite ": {

25 " coding ": [

26 {

27 " system ": "http :// snomed .info/sct",

28 "code": " 74262004 ",

29 " display ": "Oral cavity "

30 }

31],

32 "text": "Oral cavity "

33 },

34 " effectiveInstant ": "2017 -01 -01 T00 :00:00.000 Z",

35 " valueQuantity ": {

36 "value": 38,

37 "unit": "C",

38 " system ": "http :// unitsofmeasure .org",

39 "code": "Cel"

40 },

95

41 " device ": {

42 " reference ":

↪→ "urn:uuid :88 f151c0 -a954 -468a -88bd -5 ae15c08e059 "

43 }

44 }

45

• FHIR resource for communicating temperature measurement, which is a bundle of the

temperature measurement resource, the temperature sensor resource and the Smart

box resource:

1 {

2 " resourceType ": " Bundle ",

3 "type": " transaction ",

4 "entry": [

5 {

6 " fullUrl ":

↪→ "urn:uuid:ca7a77cc -f1c4 -4227 -9 a2a - b73833bfbb11 ",

7 " resource ": {

8 " resourceType ": " Observation ",

9 " status ": "final",

10 " category ": [

11 {

12 " coding ": [

13 {

14 " system ":

↪→ "http :// terminology .hl7.org/ CodeSystem / observation - category ",

15 "code": "vital -signs",

16 " display ": "Vital Signs"

17 }

18]

19 }

20],

21 "code": {

22 " coding ": [

23 {

96

24 " system ": "http :// loinc.org",

25 "code": "8310 -5",

26 " display ": "Body temperature "

27 }

28]

29 },

30 " bodySite ": {

31 " coding ": [

32 {

33 " system ": "http :// snomed .info/sct",

34 "code": " 74262004 ",

35 " display ": "Oral cavity "

36 }

37],

38 "text": "Oral cavity "

39 },

40 " effectiveInstant ": "2017 -01 -01 T00 :00:00.000 Z",

41 " valueQuantity ": {

42 "value": 38,

43 "unit": "C",

44 " system ": "http :// unitsofmeasure .org",

45 "code": "Cel"

46 },

47 " device ": {

48 " reference ":

↪→ "urn:uuid :88 f151c0 -a954 -468a -88bd -5 ae15c08e059 "

49 }

50 },

51 " request ": {

52 " method ": "POST",

53 "url": " Observation "

54 }

55 },

56 {

57 " fullUrl ":

↪→ "urn:uuid :88 f151c0 -a954 -468a -88bd -5 ae15c08e059 ",

97

58 " resource ": {

59 " resourceType ": " Device ",

60 " identifier ": [

61 {

62 " system ": "urn:ietf:rfc :3986",

63 "value":

↪→ "urn:uuid :88 f151c0 -a954 -468a -88bd -5 ae15c08e059 "

64 }

65],

66 "type": {

67 " coding ": [

68 {

69 " system ": "http :// snomed .info/sct",

70 "code": " 27991004 ",

71 " display ": " Thermometer "

72 }

73],

74 "text": " Thermometer "

75 },

76 " parent ": {

77 " reference ":

↪→ "urn:uuid :61 ebe359 -bfdc -4613 -8 bf2 - c5e300945f0a "

78 }

79 },

80 " request ": {

81 " method ": "POST",

82 "url": " Device "

83 }

84 },

85 {

86 " fullUrl ":

↪→ "urn:uuid :61 ebe359 -bfdc -4613 -8 bf2 - c5e300945f0a ",

87 " resource ": {

88 " resourceType ": " Device ",

89 " identifier ": [

90 {

98

91 " system ": "urn:ietf:rfc :3986",

92 "value":

↪→ "urn:uuid :61 ebe359 -bfdc -4613 -8 bf2 - c5e300945f0a "

93 }

94],

95 "type": {

96 " coding ": [

97 {

98 " system ": "http :// snomed .info/sct",

99 "code": " 5159002 ",

100 " display ": " Physiologic monitoring

↪→ system "

101 }

102],

103 "text": " Smartbox "

104 }

105 },

106 " request ": {

107 " method ": "POST",

108 "url": " Device "

109 }

110 }

111]

112 }

113

99

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 System Requirements
	1.3 Dissertation Structure

	2 State of the Art
	2.1 Internet of Things
	2.1.1 Fundamentals of IoT

	2.2 A Reference Model for Pervasive Healthcare Applications
	2.2.1 Layer 1: Physical Devices and Controllers
	2.2.2 Layer 2: Connectivity
	2.2.3 Layer 3: Edge (Fog) Computing
	2.2.4 Layer 4: Data Accumulation
	2.2.5 Layer 5: Data Abstraction
	2.2.6 Layer 6: Application
	2.2.7 Layer 7: Collaboration and Processes

	2.3 Survey on IoT Applications for Healthcare
	2.3.1 Weaknesses of literature

	2.4 Statement of Contributions
	2.5 Summary

	3 Smart box Development
	3.1 Deciding on a Hardware Platform
	3.1.1 Comparing the Hardware Platforms
	3.1.2 Final Decision on Smart box hardware

	3.2 Communication with the Biostickers
	3.2.1 Technical Background
	3.2.2 Choosing a BLE adapter
	3.2.3 Testing BLE Communication
	3.2.4 Decision on the BLE adapter

	3.3 Summary

	4 Smart Gateway Development
	4.1 Service Architecture
	4.2 Data Storage
	4.2.1 Database Schema

	4.3 Connection to the Smart boxes
	4.3.1 Proposed MQTT Specification
	4.3.2 Authorization and Authentication Plugin

	4.4 Data pre-processing
	4.5 HIS FHIR Integration
	4.5.1 FHIR Server

	4.6 Summary

	5 Experimental Validation
	5.1 Hospital Pilot
	5.1.1 Results and Discussion

	5.2 Laboratory Tests
	5.2.1 Results and Discussion

	5.3 Summary

	6 Conclusion
	6.1 Future Work

	Bibliography
	A MQTT Payload Formats
	B FHIR Resource JSON Representations

